REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-01-

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send his
collection of information, including suggestions for reducing this burden, to Washington Headquarters Service: son
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperw .

Public reporting burden for this collection of information is estimated to average 1 hour per response, including &ﬁ% ! es,

1. AGENCY USE ONLY (Leave blank] | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

22 Aug 00 { . Final Tech Report 15 Nov 96 to 14 Nov 99
4. TITLE AND SUBTITLE o 5. FUNDING NUMBERS
Development and Application of New Algorithms for the Simulation of Viscous F49620-97-1-0032

Compressible Flows with Moving Bodies in Three Dimensions

6. AUTHORI(S)
Rainald Lohner, Chi Yang and Juan R. Cebral

7. PERFORMING ORGANIZATION NAME(S)} AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
George Mason University REPORT NUMBER

CsI

Fairfax, VA 22030-4444

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING |
Air Force Office of Scientific Research AGENCY REPORT NUMBER

AFOSR/NM
801 N. Randolph Street, Rm 732
Arlington, VA 22203-1977

F49620-97-1-0032

11. SUPPLEMENTARY NOTES

12b. DISTRIBUTION CODE

AR FORGE OFFICE Of SIENTIFIC RESEARCH (4F0SR)

NOTICE OF TRUNSKTITAL TIC. THIS TECHNIGAL RS

HAS BEEN REVIEWED|ND 15 APPOVED FOR PUBLI RELEASE
MS UNLMITED

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words) MWAFH .2 -

The overall objective of the research carried out over the last three years was the development of new algorithms for the
efficient simulation of viscous compressible flows with moving bodies in three dimensions using unstructured grids. The
development was based on current 3-D Euler/Navier-Stokes capabilities, and encompassed flow solvers, grid generation,
fluid-structure interaction, the efficient use of supercomputer hardware, and new visualization capabilities. The research
carried out over the last three years significantly advanced the state of the art in this area of CFD. The particular topics are
treated below in detail.

20010212 008

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION }20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

= e o 278 Ty 230 T
RRiscnlacs rescribe . A
iﬁm 4 Designed usi\{\g Perform Pro, WHS/DIOR, Oct 94

DTIC GUALITY 12

\

FINAL REPORT: DECEMBER 1999

F 49620-97-1-0032

DEVELOPMENT AND APPLICATION OF NEW ALGORITHMS FOR
THE SIMULATION OF VISCOUS COMPRESSIBLE FLOWS
WITH MOVING BODIES IN THREE DIMENSIONS

Rainald Lohner, Chi Yang and Juan R. Cebral
GMU/CSI, George Mason University
Fairfax, VA 22030-4444

presented to:

Air Force Office of Scientific Research /NM
c/o Dr. Leonidas Sakell
801 North Randolph Street, Room 732
Arlington VA 22203-1977

FINAL REPORT: DECEMBER 1999

F 49620-97-1-0032

DEVELOPMENT AND APPLICATION OF NEW ALGORITHMS FOR
THE SIMULATION OF VISCOUS COMPRESSIBLE FLOWS
WITH MOVING BODIES IN THREE DIMENSIONS

Rainald Lohner, Chi Yang and Juan R. Cebral
GMU/CSI, George Mason University
Fairfax, VA 22030-4444

SUMMARY

The overall objective of the research carried out over the last three years was the
development of new algorithms for the efficient simulation of viscous compressible flows
with moving bodies in three dimensions using unstructured grids. The development was
based on current 3-D Euler/Navier-Stokes capabilities, and encompassed flow solvers,
grid generation, fluid-structure interaction, the efficient use of supercomputer hardware,
and new visualization capabilities. The research carried out over the last three years
significantly advanced the state of the art in this area of CFD. The particular topics
are treated below in detail.

B

1. FLOW SOLVERS

For the flow solvers, seven major developments took place over the course of this re-
search effort:

a) Implicit flow solvers;
b) Better mesh moving strategies;

¢) Implementation of turbulence models; and
d) Validation studies.

1.1 Implicit Flow Solvers

Implicit flow solvers are considered essential for the efficient simulation of viscous, com-
pressible, time-dependent flows. We developed a linearized implicit scheme that uses a
Generalized Minimal RESiduals algorithm in conjunction with incomplete lower-upper
(ILU) preconditioning for the solution of the Euler and Navier-Stokes equations. The
results were encouraging, showing that for Euler problems steady state results could
be achieved in less than 40 steps. On the other hand, the storage costs and the cost of
getting close to the solution at the start of the iteration were considered suboptimal.
This led to development of matrix-free preconditioners, in particular GMRES-LU-SGS.

The Euler/Navier-Stokes equations may be written as a system of conservation laws of
the form:

ll,t -+ V- F= 0 ,
or, in integral form, as:
d udQ) + /F dl' =0
dt net =

The set of equations resulting from spatial discretization using an edge-based data
structure may be written as:

Mfuft = ri = Z Cij . F,‘j 5 (1)
where M, C,u and F denote, respectively, the lumped mass-matrix (volume), geom-
etry (shape-function derivative) factor, unknowns and fluxes. Work continued on the

GMRES-LU-SGS scheme. This scheme is based on the vectorized LU-SGS scheme

first proposed in [2]. The implicit time integration of Eqn.(1) using a backward Euler
scheme with linearization yields:

[EMI Z Ccv. Aij] Au' =rt . (2)

Denoting by pa the spectral radius of the Jacobian A and defining:
D= [—-—M’ OSZC”pA] , AF =F(u+ Au) - F(u) , (3)

3

this system of equations is solved by the following relaxation procedure:
a) Forward Sweep:

Aii' = D! [ri —05) CY.(AFy; ~ PAAﬁj)] (4a)
b) Backward Sweep:

Au® = Ad* —0.5D? ok -‘(AF,']‘ — pAAuECij . (AFiJ‘ - pAAuj) (4b)

We have shown in [2,5,6] that this scheme is an excellent preconditioner for the Genere-
alized Minimal RESiduals (GMRES) iterative solver that is by now firmly established
in CFD. This scheme was extended to transient problems (time-accurate solvers [6])
and was investigated further in two directions, namely: robustness and parallelism.

The investigations with respect to the robustness of the GMRES-LU-SGS showed that
the scheme was remarkably insensitive to point and edge numbering. Parallel schemes
were investigated for shared-memory machines. It was found that the GMRES-LU-
SGS parallelizes well up to 24 processors, the maximum number avaible to us at the

present time. For technical details the reader is referred to [2], which is reproduced in
Appendix 1.

1.2 Better Mesh Moving Strategies

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the
distance from moving bodies was developed [11]. This variable diffusivity enforces a
more uniform mesh velocity in the region close to the moving bodies. Given that in
most applications these are regions where small elements are located, the new proce-
dure decreases considerably element distortion, reducing the need for local or global
remeshing, and in some cases avoiding it alltogether. A hypersonic store release was
used to test the new algorithm. Numerical results obtained show that the new mesh
velocity smoothing leads to a much less deformed grid close to the moving missile. For
this case, the number of local remeshings required dropped by a factor of 1:4, leading
to considerable CPU savings in multiprocessor environment. Since then, this algorithm
has been used extensively for many applications [9-12]. For technical details the reader
is referred to [11].

1.3 Implementation of Turbulence Models

We continued with the implementation of several turbulence models. Some of these
have very stiff source or production terms that require careful numerical treatment.
For technical details the reader is referred to [1,8].

1.4 Validation Studies

The efficiency and fidelity of the new Arbitrary Lagrangian-Eulerian (ALE) methodol-
ogy on unstructured grids was validated by two simulations. This validation effort was
part of an ongoing research effort to develop a cost-efficient and accurate numerical
methodology capable of simulating the motion of complex-geometry, three-dimensional
bodies embedded in external, temporally and spatially evolving flow-fields.

The first computation modeled the separation of a fuel tank from an F-16 C/D fighter.
The numerical Eulerian predictions were compared to the available experimental data.
First, a series of steady- state runs were performed to compare overall loads and mo-
ments. Then, the fuel tank was released, with proper modeling of the initial impulse
due to explosive release. Very good agreement was obtained between the predicted and
measured fuel tank trajectory [10].

The second simulation modeled canopy trajectory for an F-18 fighter. As before, very
good agreement was obtained between the predicted and measured fuel tank trajectory

12).

2. GRID GENERATION

In the area of grid generation, there were three major developments that took place
during the course of this research effort:

a) Surface meshing from discrete data;

b) Parallel grid generation; and

¢) Navier-Stokes gridding.

2.1 Surface Meshing from Discrete Data

An advancing front surface gridding technique that operates on discretely defined faces
was developed [29]. This technique is based on three steps: surface feature recovery,
actual gridding, and surface recovery. The following aspects have to be considered
carefully in order to make the precedure reliable for complex geometries:

a) Recovery of surface features and discrete surface patches from the discrete data,

b) Filtering based on point and side normals to remove undesirable data close to
cusps and corners,

c¢) Proper choice of host faces for ridges, and

d) Fast interpolation procedures suitable for complex geometry.
Several examples ranging from academic to industrial demonstrated the utility of the
developed procedure for ab initio surface meshing from discrete data, such as encoun-
tered when the surface description is already given as discrete, the improvement of
existing surface triangulations, as well as remeshing applications during runs exhibit-
ing significant change of domain. For technical details the reader is referred to [29].

2.2 Parallel Grid Generation

FY99 saw the development, coding and debugging of a new parallel advancing front
grid generation algorithm. We consider this to be truly a breakthrough, as it allows
the unstructured grid ALE moving body methodology to be extended fully to parallel
machines. To date, the required remeshing that always appears for moving mesh sim-
ulations with complex body motion had to be carried out in scalar mode. If we define
as dpmin the minimum element size in the active front, and as s, the minimum box
size in which elements are to be generated, the parallel advancing front grid generator
proceeds as follows: '
WHILE: There are active faces left:

- Form an octree with minimum octant size sy, for the active points;
Retain the octants that have faces that will generate elements of size dp;n to
(9 dmin;
If too many octants are left: agglomerate them into boxes;
DO ISHFT=0,2:

- IF: ISHFT.NE.O:

Shift the boxes by a preset amount;
- ENDIF _
- Generate, in parallel, elements in these boxes, allowing only elements up to a
size of ¢; - dimin;

- ENDDO

- Increase dmin = 1.5 * dmin, Smin = 1.5 % S;in;
ENDWHILE

The increase factor allowed is typically in the range ¢; = 1.5 — 2.0. Major areas of work
included:
noi

- Treatment of cases with large variation of element size;

- Proper estimation of work per domain/processor;

- Load balancing; and

- Reduction of inter-box faces.
The parallel mesh generation technique was debugged and improved during FY99, and
has now been incorporated into the production code FEFLO98. The speedups obtained
for grid generation are now comparable to those of the CFD solver. For more details
on the parallel grid generator, see [23], which is reproduced in Appendix 2.

2.3 Navier-Stokes Gridding

Creating highly stretched grids of acceptable quality for complex configurations has
been an outstanding goal for over two decades. During FY98 and FY99 we continued
the development of a new RANS gridding algorithm that was conceived in FY97. The
key steps of this algorithm may be summarized as follows:
a) Generate first an isotropic mesh.
b) Using a constrained Delaunay technique, introduce points in order to generate
highly stretched elements.
c) Introduce the points in ascending level of stretching, i.e. from the domain interior
to the boundary (or interior boundaries).
This procedure has the following advantages:
No surface recovery is required for the Delaunay reconnection, eliminating the
most problematic part of this technique;
Proper meshing at concave ridges/corners is obtained:;
The meshing of concave ridges/corners requires no extra work;
Meshing problems due to surface curvature are minimized;
In principle, no CAD representation of the surface is required; and
A final mesh is guaranteed, an essential requirement for industry.
The disadvantages are the following;:
- As with any Delaunay technique, the mesh quality is extremely sensitive to point
placement.
Major areas of work included:
- Point removal techniques in the pre-RANS-gridding phase;
- Proper point placement to mitigate the possible negative effects of Delaunay re-
connection;
- Acceptance/rejection tests for new points, particularly for gaps;
- Reconnection of surface faces for optimal meshes; and
- Smooth transition of element size and stretching.
While this is work in progress, we feel confident that a new level of gridding technology

has been achieved. For more details the reader is referred to [21,22], which is reproduced
in Appendix 3.

3. FLUID-STRUCTURE-THERMAL COUPLING

In the area of interdisciplinary couling, there were three major developments that took
place during the course of this research effort:
a) Loose coupling strategies for fluid-structure-thermal problems;

b) Link to FEEIGEN, NASTRAN and DYNA3D; and
¢) Breakup and topology change.

3.1 Loose Coupling Strategies

In order to solve, in a cost-effective manner, fluid-structure-thermal interaction prob-
lems, a loosely coupled algorithm to combine computational fluid dynamics (CFD),
computational structural dynamics (CSD) and computational thermo-dynamic (CTD)
codes was devised. In this algorithm, the structure is used as the ’master-surface’
to define the extent of the fluid region, and the fluid is used as the ’master-surface’
to define the loads. The transfer of loads, heat fluxes, displacements, velocities and
temperatures is carried out via fast interpolation and projection algorithms. This
fluid-structure-thermal algorithm can be interpreted as an iterative solution to the
fully coupled, large matrix problem that results from the discretization of the complete
problem. The advantage of this new algorithm is that it allows a cost effective re-use
of existing software, with minimum amount of alterations required to account for the
interaction of the different media.

Several example runs using FEFLO98 as the CFD code, and NASTRAN as the
CSD/CTD code, demonstrate the effectiveness of the proposed methodology. For more
details, see the AIAA invited paper, Ref. [15], which is reproduced in Appendix 4, as
well as [13-19].

3.2 Link to FEEIGEN, NASTRAN and DYNA3D

The CFD code was linked to three different structural solvers that span a large range
of applications:

a) FEEIGEN is an eigenmode integrator with adaptive timestep. FEEIGEN can read
eigenmode information from a variety of sources, including such well-known codes as

NASTRAN and ANSYS. It then integrates the eigenmodes in time, thus producing the
structural response.

b) NASTRAN is a general-purpose linear Finite Element code used in the present con-
text for elasticity and thermal problems. The particular version used is the COSMIC-
NASTRAN code, as it offered the possibility of accesing the source code.

¢) DYNA3D is a general-purpose nonlinear Finite Element code used in the present
context for impact and shock-structure interaction simulation. The particular sed is
the LLNL public-domain DYNAS3D, as it offered the possibility of accesing the source
code.

3.3 Breakup and Topology Change

The loosely coupled algorithm was extended to include breakup and topology change.
Suppose that due to cracking, failure, spalation, etc., the ‘wetted surface’ of the CSD
domain has been changed. This new surface, given by a list of points and faces, has to
be matched with a corresponding CFD surface. The CFD surface data typically consists
of surface segments defined by analytical functions that do not change in time (such as
exterior walls, farfield boundaries, etc.), and surface segments defined by triangulations
(ie. discrete data) that change in time. These triangulations are obtained from the
‘wetted CSD surface’ at every timestep. When a change in topology is detected, the
new surface definition is recovered from the discrete data, and joined to the surfaces
defined analytically. The discrete surface is defined by a support triangulation, with
lines and end-points to delimit its boundaries. In this sense, the only difference with
analytically defined surfaces is the (discrete) support triangulation. The patches, lines
and end-points of the ‘wetted CSD surface’ are identified by comparing the unit surface
normals of adjacent faces. If the scalar product of them lies below a certain tolerance,
a ridge is defined. Corners are defined as points that are attached to:

- Only one ridge;

- More than two ridges; or

- Two ridges with considerable deviation of unit side-vector.
Between corners, the ridges form discrete lines. These discrete lines either separate
or are embedded completely (i.e. used twice) in discrete surface patches [19]. For
the old surface definition data set, the surface patches attached to wetted CSD surfaces
are identified and all information associated with them is discarded. The remaining
data is then joined to the new wetted CSD surface data, producing the updated surface
definition data set. This data set is then used to generate the new surface and volume
grids.
The surface reconstruction procedure may be summarized as follows:

- For the Updated Discrete Data, Obtain:
Surface Patches + B.C.
- Lines
End-Points
- Sources
- For the Old Analytical+Discrete Data:
- Remove Discrete Data
- Reorder Arrays
- Merge:
- 0Old Analytical Data
- Updated Discrete Data

H

Once a new mesh has been generated, the solution from the previous timestep (on
the previous mesh) has to be interpolated. Optimal interpolation algorithms for un-
structured grids were developed in a previous AFOSR-sponsored effort. Whenever new

9

fluid domains are created due to failure, cracking and spalation, interpolating the fluid
solution from the previous timestep to these new domains will end in failure, as there
are no possible host elements in the old mesh. It is therefore important to identify
points of the new mesh that lie outside the confines of the old mesh. A new way that
was developed and that has proven successful is to form a Cartesian mesh or bins. A
loop is then performed over the elements of the old mesh, marking the bins covered by
elements. In a second loop over the points of the new grid, all points that fall into bins
not covered by the old grid are marked as impossible to interpolate. This procedure
can be done recursively by obtaining the confines of the volume where points have been
marked as impossible, leading to so-called ‘telescoping’ of the bin search region. No
attempt is then made to interpolate the points marked as outside the old mesh. The
unknowns for these points can be extrapolated using different procedures:

- Advancing layers (most often used for subsonic/isotropic flows);

- Upstream (used primarily for supersonic flows);

- Closest known point (for cracks); or

- Via user-prescribed subroutine (for special cases).

For technical details the reader is referred to [19], which is reproduced in Appendix 5.

4. EFFICIENT USE OF SUPERCOMPUTING HARDWARE

During the present effort we parallelized the majority of the ‘core’ subroutines required
by the flow solver for shared memory, parallel machines. In order to appreciate the
task at hand, consider the following Laplacian right-hand-side loop in its original form:
do 1600 iedge=1,nedge
ipoil=lnoed(1,iedge)
ipoi2=1noed(2,iedge)
redge=geoed(iedge)*(unkno(ipoi2)-unkno (ipoil))
rhspo(ipoil)=rhspo(ipoil)+redge
rhspo(ipoi2)=rhspo(ipoi2)-redge
1600 continue

Here nedge,lnoed,geoed,unkno,rhspo denote, respectively, the number of edges,
edge-point connectivity, geometrical and physical edge-parameters, unknowns at points
and the right-hand-side vector at points. In order to run well on a shared memory,
cache-and RISC-based (i.e. pipelined) parallel machine, it has to be re-written as:

10

do 1000 imacg=1,npasg,nproc
imacO= imacg
imaci=min(npasg,imacO+nproc-1)
c$doacross local(ipasg,ipass,npas0O,npasi,iedge,nedg0,nedgl,
c$& ipoil,ipoi2,redge) ! Parallelization directive
do 1200 ipasg=imac0,imacil
npasO=edpag(ipasg)+1
npasl=edpag(ipasg+1)
do 1400 ipass=npasO,npasi
nedgO=edpas(ipass)+1
nedgl=edpas(ipass+1)
c$dir ivdep ! Pipelining directive
do 1600 iedge=nedgO,nedgl
ipoii=lnoed(1,iedge)
ipoi2=lnoed(2,iedge)
redge=geoed(iedge)*(unkno(ipoi2)-unkno (ipoi1))
rhspo(ipoil)=rhspo(ipoil) +redge
rhspo(ipoi2)=rhspo(ipoi2)-redge
1600 continue
1400 continue
1200 continue
1000 continue

where nproc denotes the nr. of processors. Approximately 100 subroutines were re-
written during this period of time. For technical details, see [24,25,26]. Figure 1 shows
the speedups obtained for a sueprsonic inlet flow on a number of platforms. Scalability
is evident.

32
Ideal - g
SGI-O2K SHM -+
16 SGI-O2K MPI -
IBM-SP2 MP| -
HP-DAX MPI -a--
Q 8
=
©
[}
(0]
Q.
(%) 2l
2 -
1

1 2 4 8 16 32
Nr. of Processors

Euler, 500Ktet, RK3, Roe+MUSCL

11

5. POST-PROCESSING

In order to handle the very large amounts of output data produced by current CFD
runs with moving bodies, a new post-processing tool, called ZFEM, was developed.
The following design requirements were set out for the new visualization system:

Continuous (Grid-Based) and Discrete (Particle-Based) Data,
- Distributed/Remote Reading

- Distributed/Remote Display

- Collaborative/Linked Display

- Multidisciplinary

- On-Line Display With Loose Coupling
- Interactive

- Repeatable (Movie-Making)

- Steering

- Portable

- User Friendly

- Minimum Storage

- Maximum Speed

A new visualization system was devised, whose core ideas are summarized below:

Master/Worker/Viewer /Signaler Task Assignment
Link Workers/Viewers on Different Hosts
Interaction With Solver via Signal Files

Script System (Movie-Making)

Standard Libraries: OpenGL, Motif, PVM

C Language

Optimized Data Structures for Display

GUI + Help System (HTML)

Two novel aspects, that set this new visualizer apart from anything hitherto developed,
are:

- The parallel visualization of distributed data;

- The concurrent, collaborative visualization of data across the internet. This last
aspect has made collaborative assignments across geographically distant locations
a reality;

- The ability to connect, remotely, to a running flow solver for on-line visualization
without disturbing its performance.

This new visualization system is still evolving. For more information on its current sta-
tus, see the web-page: http://www.science.gmu.edu/~ j cebral/pages/zfem.html.

12

s

6. SUMMARY

The present research effort significantly advanced the state of the art in the simulation
of compressible viscous flows with moving bodies. A number of breakthroughs and
“firsts’ were achieved, of which the following are considered the most important:

- The first fast matrix-free implicit scheme for unstructured grids (GMRES-LU-SGS)
2];

- The first scalable, shared-memory, unstructured-grid flow solver [25];

- The first conservative load transfer algorithm for fluid-structure interaction simu-
lations [13];

- The first simulation of compressible flows with more than a thousand indepen-
dently moving bodies [19];

- The most complex fluid-structure interaction simulation to date [16]; and
- The first fluid-structure interaction simulation capability for accurate fragmenta-

tion and cracking [19].

More work is still required to transform these algorithms into daily production tools
that can be used effectively in the design and engineering process. -
7. REFERENCES

We published extensively in the literature. Some of these papers are listed below.

7.1 Flow Solvers:

[1] H. Luo, J.D. Baum and R. Léhner - Computation of Compressible Flows Using a
Two-Equation Turbulence Model on Unstructured Grids; AIAA-97-0430 (1997).

[2] H. Luo, J.D. Baum and R. Lohner - A Fast, Matrix-Free Implicit Method for
Compressible Flows on Unstructured Grids; J. Comp. Phys. 146, 664-690 (1998).

[3] R. Lohner - Computational Aspects of Space-Marching; ATAA-98-0617 (1998).

[4] R. Lohner, J. Cebral, J.D. Baum and H. Luo - Capabilities and Issues of
Unstructured-Grid CFD for High-Speed Flight Vehicles; Int. CFD Workshop for
Super-Sonic Transport Design, Tokyo, Japan, March 16-17 (1998).

(5] H. Luo, J.D. Baum and R. Lohner - A Fast, Matrix-Free Implicit Method for
Compressible Flows on Unstructured Grids; AIAA-99-0936 (1999).

[6] H. Luo, J.D. Baum and R. Lohner - An Accurate, Fast, Matrix-Free Implicit
Method for Computing Unsteady Flows on Unstructured Grids; AIAA-99-0937
(1999).

13

[7] H. Luo, J.D. Baum and R. Lohner - A Fast, Matrix-Free Implicit Method for
Computing Low Mach-Number Flows on Unstructured Grids; AIAA-99-3315-CP
(1999).

(8] H. Luo, D. Sharov, J.D. Baum and R. Lohner - On the Computation of Compress-
ible Turbulent Flows on Unstructured Grids; AIAA-00-0926 (2000).

[9] D. Sharov, H. Luo, J.D. Baum and R. Lohner - Implementation of Untructured
Grid GMRES+LU-SGS Method on Shared-Memory, Cache-Based Parallel Com-
puters; ATAA-00-0927 (2000).

7.2 Flow Solvers. Validation and Studies:

[10] J.D. Baum, H. Luo, R. Lohner, E. Goldberg and A. Feldhun - Application of
Unstructured Adaptive Moving Body Methodology to the Simulation of Fuel Tank
Separation From an F-16 C/D Fighter; AIAA-97-0166 (1997).

[11] Chi Yang and R. Léhner - Numerical Simulation of a Maneuvering Missile Using
a Loose Fluid-Structure Coupling Algorithm; AIAA-97-0408 (1997).

(12] J.D. Baum, R. Loéhner, T.J. Marquette and H. Luo - Numerical Simulation of
Aircraft Canopy Trajectory; AIAA-97-1885 (1997).

7.3 Link to CSD:

[13] J.R. Cebral and R. Léhner - Conservative Load Projection and Tracking for Fluid-
Structure Problems; AIAA J. 35, 4, 687-692 (1997).

[14] J.R. Cebral and R. Léhner - Fluid-Structure Coupling: Extensions and Improve-
ments; ATAA-97-0858 (1997).

[15] R. Lohner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone and C. Char-
man - Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and
Adaptive Unstructured Grids; AIAA-98-2419 [Invited] (1998).

[16] J.D. Baum, H. Luo, E. Mestreau, R. Lohner, D. Pelessone and C. Charman - A
Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Fragmen-
tation; ATAA-99-0794 (1999).

(17] R. Lohner, C. Yang, J. Cebral, J.D. Baum, E. Mestreau, H. Luo, D. Pelessone and
C. Charman - Fluid-Structure-Thermal Interaction Using Adaptive Unstructured
Grids; pp.109-120 in Computational Methods for Fluid-Structure Interaction (T.
Kvamsdal et al. eds.), Tapir Press (1999).

[18] R. Lohner, Chi Yang, J.D. Baum, H. Luo, D. Pelessone and C. Charman - The Nu-
merical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies;
Int. J. Num. Meth. Fluids 31, 113-120 (1999).

14

(19] R. Lohner, C. Yang, J. Cebral, J.D. Baum, H. Luo, E. Mestreau, D. Pelessone
and C. Charman - Fluid-Structure Interaction Algorithms for Rupture and Topol-

ogy Change; Proc. 1999 JSME Computational Mechanics Division Meeting, Mat-
suyama, Japan, November (1999).

7.4 Grid Generation:

[29] R. Lohner - Automatic Unstructured Grid Generators; Finite Elements in Analysis
and Design 25, 111-134 (1997).

[21] R. Lohner - Automatic Generation of Unstructured Grids Suitable for RANS Cal-
culations; Proc. ICASE/LaRC/ARO/NSF Workshop on Computational Aero-
sciences in the 21st Century, Hampton, VA, April 22-24 (1998).

[22] R. Lohner - Generation of Unstructured Grids Suitable for RANS Calculations;
ATAA-99-0662 (1999).

[23] R. Lohner - A Parallel Advancing Front Grid Generation Scheme; AIAA-00-1005
(2000).

7.5 Supercomputing

[24] J. Tuszynski and R. Lohner - Parallelizing the Construction of Indirect Access

Arrays for Shared-Memory Machines; Comm. Appl. Num. Meth. Eng. 14, 773-781
(1998).

[25] R. Lohner - Renumbering Strategies for Unstructured-Grid Solvers Operating on
Shared-Memory, Cache-Based Parallel Machines; Comp. Meth. Appl. Mech. Eng.
163, 95-109 (1998).

[26] J.R. Cebral - ZFEM: Collaborative Visualization for Parallel Multidisciplinary
Applications; Proc. Parallel CFD’97, Manchester, UK, May (1997).

7.6 Visualization

[27] J.R. Cebral and R. Léhner - Interactive On-Line Visualization and Collaboration
for Parallel Unstructured Multidisciplinary Applications; AIAA-98-0077 (1998).

[28] J. Cebral and R. Léhner - Advances in Visualization: Distribution and Collabora-
tion; ATAA-99-0693 (1999).

15

APPENDIX 1: IMPLICIT FLOW SOLVERS

16

JOURNAL OF COMPUTATIONAL PHYSICS 146, 664690 (1998)
ARTICLE NO. CP986076

A Fast, Matrix-free Implicit Method
for Compressible Flows on
Unstructured Grids

Hong Luo, Joseph D. Baum, and Rainald Lohner

Reprinted from JOURNAL OF COMPUTATIONAL PHYsICS, Vol. 146, No. 2, November, 1998
Copyright © 1998 by Academic Press, Inc. Printed in U.S.A.

JOURNAL OF COMPUTATIONAL PHYSICS 146, 664690 (1998)
ARTICLE NO. CP986076

A Fast, Matrix-free Implicit Method
for Compressible Flows on
Unstructured Grids

Hong Luo,*! Joseph D. Baum,* and Rainald Lohnert

*Applied Physics Operations, Science Applications International Corporation, McLean,
Virginia 22102; tInstitute for Computational Sciences and Informatics,
George Mason University, Fairfax, Virginia 22030
E-mail: luo@mclapo.saic.com

Received October 21, 1997; revised July 31, 1998

A fast, matrix-free implicit method has been developed to solve the three-dimen-
sional compressible Euler and Navier-Stokes equations on unstructured meshes.
An approximate system of linear equations arising from the Newton linearization
is solved by the GMRES (generalized minimum residual) algorithm with a LU-

= SGS (lower-upper symmetric Gauss—Seidel) preconditioner. A remarkable feature
of the present GMRES+LU-SGS method is that the storage of the Jacobian matrix
can be completely eliminated by approximating the Jacobian with numerical fluxes,
resulting in a matrix-free implicit method. The method developed has been used to
compute the compressible flows around 3D complex aerodynamic configurations for
a wide range of flow conditions, from subsonic to supersonic. The numerical results
obtained indicate that the use of the GMRES+LU-SGS method leads to a significant
increase in performance over the best current implicit methods, GMRES+ILU and
LU-SGS, while maintaining memory requirements similar to its explicit counterpart.
An overall speedup factor from eight to more than one order of magnitude for all test
cases in comparison with the explicit method is demonstrated. @ 1998 Academic Press

1. INTRODUCTION

The use of unstructured meshes for computational fluid dynamics problems has become
widespread due to their ability to discretize arbitrarily complex geometries and due to
the ease of adaptation in enhancing the solution accuracy and efficiency through the use
of adaptive refinement techniques. In recent years, significant progress has been made in

! Corresponding author.

664

0021-9991/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 665

developing numerical algorithms for the solution of the compressible Euler and Navier—
Stokes equations on unstructured grids.

Early efforts in the development of temporal discretization methods using unstructured
grids focused on explicit schemes. Usually, explicit temporal discretizations such as mul-
tistage Runge—Kutta schemes are used to drive the solution to steady state. Acceleration
techniques such as local time-stepping and implicit residual smoothing have also been com-
bined in this context. In general, explicit schemes and their boundary conditions are easy to
implement, vectorize and parallelize, and require only limited memory storage. However,
for large-scale problems and especially for the solution of the Navier-Stokes equations, the
rate of convergence slows down dramatically, resulting in inefficient solution techniques.
In order to speed up convergence, a multigrid strategy or an implicit temporal discretization
is required.

In general, implicit methods require the solution of a linear system of equations arising
from the linearization of a fully implicit scheme at each time step or iteration. The most
widely used methods to solve a linear system on unstructured grids are iterative solution
methods and approximate factorization methods. Significant efforts have been made to
develop efficient iterative solution methods. These range from Gauss—Seidel to Krylov sub-
space methods that use a wide variety of preconditioners (see, e.g., Stoufflet [1], Batina [2],
Venkatakrishnan et al. [3], Knight {4], Whitaker [5], Luo et al. {6], and Barth et al. [7]). The
most successful and effective iterative method is to use the Krylov subspace methods [8, 9]
such as GMRES and BICGSTAB with an ILU (incomplete lower—upper) factorization
preconditioner. The drawback is that they require a considerablece amount of memory
to store the Jacobian matrix, which may be prohibitive for large problems. Recently, the
lower-upper symmetric Gauss-Seidel method developed first by Jameson and Yoon [10]
on structured grids has been successfully generalized and extended to unstructured meshes
by several authors [11-13]. The most attractive feature of this approximate factorization
method is that the evaluation and storage of the Jacobian matrix inherent in the original
formulation of the LU-SGS method can be completely eliminated by making some approx-
imations to the implicit operator. The resulting LU-SGS method can be made even cheaper
than the explicit method per time step. However, this method is less effective than the most
efficient iterative methods such as GMRES+ILU, because of slow convergence, requiring
thousands of time steps to achieve a steady state.

The objective of the effort discussed in this paper is to develop a fast implicit method for
solving compressible flow problems around 3D complex, realistic aerodynamic configura-
tions on unstructured grids. Typically, hundreds of thousands of mesh points are necessary
to represent such engineering-type configurations accurately. Any implicit methods requir-
ing the storage of the Jacobian matrix would be impractical, if not impossible to use to solve
such large-scale problems, where the storage requirement can easily exceed the memory
limitation of present computers. In the present work a system of linear equations, aris-
ing from an approximate linearization of a fully implicit temporal discretization at each
time step, is solved iteratively by a GMRES algorithm with an LU-SGS preconditioner.
The idea behind this is to combine the efficiency of the iterative methods and low mem-
ory requirement of approximate factorization methods in an effort to develop a fast, low
storage implicit method. An apparent advantage of the LU-SGS preconditioner is that it
uses the Jacobian matrix of the linearized scheme as a preconditioner matrix, as compared
with ILU preconditioner and, consequently, does not require any additional memory stor-
age and computational effort to store and compute the preconditioner matrix. Furthermore,

666 LUO, BAUM, AND LOHNER

the storage of the approximate Jacobian matrix can be completely eliminated by approxi-
mating the Jacobian with numerical fluxes, which will lead to a fast, low-storage implicit
algorithm. The matrix-free implicit method developed has been used to compute a wide
range of test problems and has been compared with a well-known GMRES+ILU algorithm
and an approximately factored implicit algorithm LU-SGS. The new algorithm is found to
offer substantial CPU time savings over the best current implicit methods, while maintaining
a memory requirement competitive with the explicit method.

2. GOVERNING EQUATIONS

The Navier-Stokes equations governing unsteady compressible viscous flows can be
expressed in the conservative form as

oU 8F/ 3G/

=) 2.1
ot 8Xj an 2.

where the summation convention has been employed. The unknown vector U, inviscid flux
vector F, and viscous flux vector G are defined by

o p[lj 0
U= PU; , F] = PUU; + [)(S,‘j s Gj = i . (22)
pe uj(pe + p) ujoy; +k%

Here p, p, e, T, and k denote the density, pressure, specific total energy, temperature, and
thermal conductivity of the fluid, respectively, and u; is the velocity of the flow in the
coordinate direction x;. This set of equations is completed by the addition of the equation

of state,
1 1
p={(y—Dp e—-:z—ujuj , T = e—zujuj C.., 2.3)

which is valid for perfect gas, where y is the ratio of the specific heats, and C, is the specific
heat at constant volume. The components of the viscous stress tensor ¢;; are given by

ou; N ou; +x3”ks 2.4)
o = — — 8. .
i=H dx; 0x; axp

The thermal conductivity k and viscosity coefficient p are assumed to be a function of the
temperature and are determined using Sutherland’s empirical relation. It is assumed that A
and p are related by Stokes’ hypothesis

2u
A= 2.5
3 (2.5)
The left-hand side of Eq. (2.1) constitutes the Euler equations governing unsteady com-
pressible inviscid flows.
In the sequel, we assume that €2 is the flow domain, I" is its boundary, and n; is the unit
outward normal vector to the boundary.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 667

3. HYBRID DISCRETE FORMULATION

Assuming §2; is a classical triangulation of Q, N, is a standard linear finite element
shape. function associated with a node I, and C; is a dual mesh cell associated with the

node, the hybrid finite volume and finite element formulation used for discretization of the
Navier—Stokes equations is

find Uy, € 7, such that for each N; (1 < I < n)

U , j 3.1)
/ a—£d9+f F’(Uh)-njdr‘=/ 3G g,
o ot ac, Q 8Xj

where 7}, is a discrete approximation space of suitable continuous functions. Inviscid fluxes
are discretized using a cell-vertex finite volume formulation, where the control volumes are
nonoverlapping dual cells constructed by the median planes of the tetrahedra. In the present
study the numerical flux functions for inviscid fluxes at the dual mesh cell interface are com-
puted using the AUSM+ [14] (advection upwind splitting method) scheme. A MUSCL [15]
approach is used to achieve high-order accuracy. The Van Albada limiter based on primitive
variables is used to suppress the spurious oscillation in the vicinity of the discontinuities.
The implementation of the precise MUSCL strategy used in the present work can be found
in Ref. [21]. Viscous flux terms are evaluated using a linear finite element approximation,
which is equivalent to a second-order accurate central difference.

Equation (3.1) can then be rewritten in a semi-discrete form as

oU;
Vi— =R;, (3.2)

"ot
where V; is the volume of the dual mesh cell (equivalent to the lumped mass matrix in the

finite element), and R; is the right-hand side residual and equals zero for a steady-state
solution.

4. IMPLICIT TIME INTEGRATION

In order to obtain a steady-state solution, the spatially discretized Navier—Stokes equa-
tions must be integrated in time. Using Euler implicit time-integration, Eq. (3.2) can be
written in discrete form as

Vi—L =R/, 4.1)

At

where At is the time increment and AU" is the difference of an unknown vector between
time levels n and n + 1; i.e.,

AU" = U — 4.2)
Equation (4.1) can be linearized in time as

AU

v oR!
At

=R+ —LAU;, (4.3)

oU

668 LUO, BAUM, AND LOHNER

where R; is the right-hand side residual and equals zero for a steady-state solution. Writing
the equation for all nodes leads to the delta form of the backward Euler scheme

AAU =R, 4.4)
where
A= v oR” 4.5)
At U’ -

Note that as At tends to infinity, the scheme reduces to the standard Newton’s method for
solving a system of nonlinear equations. Newton’s method is known to have a quadratic
convergence property. The term dR/aU represents symbolically the Jacobian matrix. It
involves the linearization of both inviscid and viscous flux vectors. In order to obtain the
quadratic convergence of Newton’s method, the linearization of the numerical flux function
must be virtually exact. Unfortunately, explicit formation of the Jacobian matrix resulting
from the exact linearization of any second-order numerical flux functions for inviscid fluxes
can require excessive storage and is extremely expensive, if not impossible to evaluate. In
order to reduce the number of nonzero entries in the matrix and to simplify the linearization,
only a first-order representation of the numerical fluxes is lincarized. This results in the graph
of the sparse matrix dR/dU being identical to the graph of the supporting unstructured
mesh. In addition, the following simplified flux function is used to obtain the left-hand side
Jacobian matrix,

1 i
Ri(U;, U, n;) = E(F(Uh n;;) +FU;, n;)) — El)niji(Uj - Uy, (4.6)
where
il = Vi |+ Cij + —— L 4.7)
pijlx; — x|

where n;; is the unit vector normal to the cell interface, V;; is the velocity vector, and C;;
is the speed of sound. Note that this flux function is derived by replacing the Roe’s matrix
by its spectral radius in the well-known Roe’s Flux function [16],

. 1 1 .
R = E(F(Uivnij) +F@U;, n;)) — §|J(U)|(Uj -Uy) (4.8)

for the inviscid flux vector, and the viscous Jacobian matrix is simply approximated by its
spectral radius in the above linearization process. The linearization of flux function (4.6)
yields

R L@y +imgm (49)
aU; 2 ! Y '
R LWy - mym (.10)
au, 2T Al ‘

where J = 0F /09U represents the Jacobian of the inviscid flux vector. The penalty for mak-
ing these approximations in the linearization process is that the quadratic convergence of

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 669

Newton’s method can no longer be achieved because of the mismatch and inconsistency be-
tween the right- and left-hand sides in Eq. (4.4). Although the number of time steps (Newton
iterations, if At tends to infinity) may increase, the cost per each time step is significantly
reduced: it takes less CPU time to compute the Jacobian matrix and the conditioning of
the simplified Jacobian matrix is improved, thus reducing computational cost to solve the
resulting linear system.

As only a first-order representation of the numerical fluxes is considered, the number of
nonzero entries in each row of the matrix is related to the number of edges incident to the
node associated with that row. In other words, each edge i j will guarantee nonzero entries in
the ith column and jth row and, similarly, the jth column and ith row. In addition, nonzero
entries will be placed on the diagonal of the matrix. Using an edge-based data structure, the

left-hand side Jacobian matrix is stored in upper, lower, and diagonal forms, which can be
expressed as

1

U= E(J(Uja n;) — |A;1D), 4.11)
1

L = Z(=J(Us, ny)) = iy D), (4.12)
14 1

D= Z;1+21:5<J<U1-,n,~,~>+ I D). (4.13)

Note that U, L, and D represent the strict upper matrix, the strict lower matrix, and
the diagonal matrix, respectively. Both upper and lower matrices require a storage of
nedge x neqns x negns and the diagonal matrix needs a storage of npoin x negns x negns,
where npoin is the number of grid points; negns (=5 in 3D) is the number of unknown
variables and nedge is the number of edges. Note that in 3D nedge ~ Tnpoin. Clearly, the
upper and lower matrix consume substantial amounts of memory, taking 93% of the storage
required for left-hand side Jacobian matrix.

Equation (4.4) represents a system of linear simultaneous algebraic equations and needs
to be solved at each time step. The most widely used methods to solve this linear sys-
tem are iterative solution methods and approximate factorization methods. Recently, the
lower-upper symmetric Gauss—Seidel method developed first by Jameson and Yoon [10]
on structured grids has been successfully generalized and extended to unstructured meshes
by several authors [11-13]. The LU-SGS method is attractive because of its good stability
properties and competitive computational cost in comparison to explicit methods. In this
method, the matrix A is split in three matrices, a strict lower matrix L, a diagonal matrix
D, and a strict upper matrix U. This system is approximately factored by neglecting the
last term on the right-hand side of Eq. (4.14). The resulting equation can be solved in the

two steps shown in Egs. (4.15) and (4.16), each of them involving only simple block matrix
inversions:

(D+L)YD™Y(D 4+ U)AU =R+ (LD"'U)AU. (4.14)
Lower (forward) sweep:

(D + L)AU" =R. (4.15)

670 LUO, BAUM, AND LOHNER

Upper (backward) sweep:
(D + U)AU = DAU". 4.16)

Both lower and upper sweeps can be vectorized by appropriately reordering the grid
points [13], resulting in a very efficient algorithm. It is found that the CPU cost of one
LU-SGS step is approximately 50% of one three-stage Runge—Kutta explicit step.

It is clear that the above algorithm involves primarily the Jacobian matrix-solution in-
cremental vector product. Such operation can be approximately replaced by computing
increments of the flux vector AF:

JAU ~ AF = F(U + AU) — F(U). 4.17)

This idea of the matrix-free approach, in which the product of Jacobian matrix and incre-
mental vector is approximated by the increment of the flux vector, was first introduced in
the work of Sharov and Nakahashi [13]. The forward sweep and backward sweep steps can
then be expressed as

I
AU =D R = Y 5 (BF; = 13| AU)s;; | (4.18)
Jij<i
I
AU; = AU; = D' Y 5 (AF; = 3| AU;)s;;. (4.19)
Jij>i

The most remarkable achievement of this approximation is that there is no need to store the
upper and lower matrics U and L, which substantially reduces the memory requirements.
It is found that this approximation does not compromise any numerical accuracy, and the
extra computational cost is negligible.

Although the LU-SGS method is more efficient than its explicit counterpart, a significant
number of time steps are still required to achieve the steady-state solution, due to the nature
of the approximation factorization schemes. One way to speed up the convergence is to use
iterative methods. In this work, the system of linear equations is solved by the generalized
minimal residual (GMRES) method of Saad and Schultz [8]. This is a generalization of
the conjugate gradient method for solving a linear system where the coefficient matrix
is not symmetric and/or positive definite. The use of GMRES combined with different
preconditioning techniques is becoming widespread in the CFD community for the solution
of the Euler and Navier-Stokes equations [3, 5-7]. GMRES minimizes the norm of the
computed residual vector over the subspace spanned by a certain number of orthogonal
search directions. It is well known that the speed of convergence of an iterative algorithm
for a linear system depends on the condition number of the matrix A. GMRES works best
when the eigenvalues of matrix A are clustered. The easiest and the most common way to
improve the efficiency and robustness of GMRES is to use preconditioning to attempt to
cluster the eigenvalues at a single value. The preconditioning technique involves solving an
equivalent preconditioned linear system,

AAU =R, (4.20)

instead of the original system (4.4), in the hope that A is well conditioned. Left precondi-
tioning involves premultiplying the linear system with a matrix as

P 'AAU = P~'R, 4.21)

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 671

where P is the preconditioning matrix. The best preconditioning matrix for A would cluster
as many eigenvalues as possible at unity. Obviously, the optimal choice of P is A, in which
case the underlying matrix problem for GMRES is trivially solved with one Krylov vector.
The motivation for preconditioning is twofold: (a) reduce the computational effort required
to solve the linearized system of equations at each time-step; (b) reduce the total number of
time steps required to obtain a steady state solution. Preconditioning will be cost-effective
only if the additional computational work incurred for each subiteration is compensated for
by areduction in the total number of iterations to convergence. In this way, the total cost of

solving the overall nonlinear system is reduced. In the present work, the LU-SGS presented
above is used as a preconditioner, i.e.,

P=(D+L)D™Y(D+U). 4.22)

A clear advantage of the LU-SGS preconditioner is that it uses the Jacobian matrix of
the linearized scheme as a preconditioner matrix, as compared with ILU preconditioner.
Consequently it does not require any additional memory storage and computational effort

to store and compute the preconditioner matrix. The preconditioned restarted GMRES
algorithm is described below.

ALGORITHM. Restarted preconditioned GMRES (k).

Forl =1,mdo m restart iterations
vo = R — AAU, initial residual
ro:= P lyvp preconditioning step
B :=|roll» initial residual norm
vy i=ro/B define initial Krylov
forj =1,k do inner iterations
yj :=Ay; matrix—vector product
w;:=Ply; preconditioning step
Fori =1,jdo Gram-Schmidt step

hij=(w;,v;)
Wj = Wj - h,;,-v,-

EndDo

hjvrj=1w;ll2

Vipl =W hjy; define Krylov vector
EndDo

z:= min; ||Be; — HZ|; least squares solve
AU:=AUy + > | v;z; approximate solution
if |[Be; — Hz|, < € exit convergence check
AUy := AU restart

EndDo

Note that the above GMRES algorithm only requires matrix—vector products, the same
technique used in the LU-SGS method can be applied to eliminate the storage of the upper
and lower matrices.

The present GMRES+LU-SGS method only requires the storage of the diagonal matrix. In
addition, a storage corresponding to 2 x nedge is required for the two index arrays, which
are necessary to achieve the vectorization of LU-SGS method. The need for additional
storage associated with the GMRES algorithm is an array of size (k + 2) x negns x npoin,

672 LUO, BAUM, AND LOHNER

where k is the number of search directions. Since the GMRES+LU-SGS is completely
separated from the flux computation procedure, memory, which is used to compute fluxes
can be used by the GMRES+LU-SGS. Overall, the extra storage of the GMRES+LU-SGS
method is approximately 10% of the total memory requirements.

5. NUMERICAL RESULTS

The present implicit method has been used to compute a variety of compressible flow
problems for a wide range of flow conditions, from subsonic to supersonic, for both inviscid
and viscous flows, in both 2D and 3D. Only a few typical examples in 3D are presented
here to demonstrate the effectiveness and robustness of the present implicit method over the

FIG.1. (a)Surfacec mesh used for computing channel flow (nclem = 68,097, npoin = 13,091, nboun = 4,442).
(b) Computed pressure contours on the channel surface at M,, =0.5. (c) Computed Mach number contours on the
channel surface at M,, = 0.5.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 673

4 s
OO Expligit ==
LU-SGS ----
05 GMRES+ILU ----- .
GMRES+LU-SGS -
-1 Matrix-Free LU-SGS -~ -
Matrix-free GMRES+LU-SGS -----
-15 F
) ;
) sy,
’3 ‘25 Y MMW\""’\N\AN i
3 i “
\‘
<35 H g
Al |
y
4.5 |1 .
_5 1 1 1 i 1 i] 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps
e 05 I i T | T 1 1
0 b Explicit —— |
LU-SGS ----
-0.5 GMRES+ILU ----- -
GMRES+LU-SGS -
-1 Matrix-Free LU-SGS ~-~-~ -
Matrix-free GMRES+LU-SGS -----
w
8 |
&
9 .
|
“‘ v
_5 1 H 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
CPU (Second)

FIG.1. (d)Convergence history versus time steps for subsonic channel flow using different schemes: explicit,
GMRES+ILU, LU-SGS, GMRES+LU-SGS, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS. (e) Con-
vergence history versus CPU time for subsonic channel flow using different schemes: explicit, GMRES+ILU,
LU-SGS, GMRES+LU-SGS, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS.

existing implicit methods. No attempt has been made to use our GMRES+ILU method [6]
to solve the Navier—Stokes equations and large-scale problems, as its storage requirement
exceeds the memory limitation of the computer available to us.

All of the grids used here were generated by the advancing front technique [17]. All
computations were started with uniform flow. The relative L, norm of the density residual
is taken as a criterion to test convergence history. The solution tolerance for GMRES is
set to 0.1 with 10 search directions and 20 iterations. We observed that during the first few
time steps, more iterations are spent to solve the system of the linear equations: even 20
iterations cannot guarantee that the stopping criterion will be satisfied for some problems.
However, it only takes four or five iterations to solve the linear equations at a later time,

674 LUO, BAUM, AND LOHNER

f T
ntime=] -o—
ntime=2 -+--
ntime=10 -8-- -
ntime=20 -
ntime=80 -4~
S |
+ #‘_‘*“*\
2
E -
Q
s
- i
-1.2 L , l
0 3 10 is "
Iterations
g 0 T T T T T T T T T
CFL=100 —
CFL=10,000 -----
-0.5 CFL=100,000 ----- .
1k)
g
& -1.5 F |
Q
-
2 ¢ |
25 F |
-3 : : . L 1) 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps

FIG. 1. (f) Convergence history of lincar system at different time-steps for subsonic flow by matrix-frce

GMRES+LU-SGS method. (g) Effect of CFL number on convergence history by matrix-free LU-SGS method
for subsonic flow.

and global convergence is not affected by a lack of linear system convergence during the
first few time steps.

A. Inviscid Subsonic Flow in a Channel with a Circular Bump on the Lower Wall

The first example is the well-known Ni’s test case: a subsonic flow in a channel with a
10% thick circular bump on the bottom. The length of the channel is 3, its height is 1, and
its width is 0.5. The inlet Mach number is 0.5. This is a three-dimensional simulation of
a two-dimensional flow. Since no shock waves are present in the flow fields, all solutions
were obtained using a second-order scheme without any limiters. The mesh, which contains
13,891 grid points, 68,097 elements, and 4442 boundary points is depicted in Fig. 1a. The

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 675

h 0 T T T T T T T T T
coarse mesh ——
fine mesh -----
F
o
Q
[
25 | 1 1 ! i L 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps
i 0.5 T T T T T T T
0 Joorrmrrrmerm s SOBESCNESAL
fine mesh -----
79”:]
B |
—

0 20 40 60 80 100 120 140 160
Time steps

FIG.1. (h) Convergence history of the residual for coarse and fine meshes for subsonic flow by explicit me-

thod. (i) Convergence history of the residual for coarse and fine meshes for subsonic flow by GMRES+LU-SGS
implicit method.

computed Mach number and pressure contours in the flow field are shown in Figs. 1b and
lc, respectively. Figures 1d and e display a comparison of convergence histories among the
explicit scheme, the GMRES+ILU scheme, the LU-SGS scheme, the GMRES+LU-SGS
scheme, the matrix-free LU-SGS scheme, and the matrix-free GMRES+LU-SGS scheme
versus time steps and CPU time, respectively. The explicit method used a three-stage Runge-
Kutta time-stepping scheme with local time stepping and implicit residual smoothing. The
computation was advanced with a CFL number of 4. A CFL number of 10,000 was used
by all implicit methods in the computation. It is clear that GMRES+LU-SGS methods
are superior to both GMRES+ILU and LU-SGS methods. The present GMRES+LU-SGS
method is over 100 times faster than its explicit counterpart for this particular case. This
is due to the fact that the convergence of the explicit method deteriorates dramatically for

676 LUO, BAUM, AND LOHNER

a low-speed flow problem. From Fig. le we observe that both the matrix-free LU-SGS
scheme and the matrix-free GMRES+LU-SGS scheme yield a convergence history that
is identical to their respective matrix counterparts. This indicates that both matrix-free
schemes yield solutions that are identical to their matrix counterparts. However, the matrix-
free GMRES+LU-SGS scheme is slightly more expensive than its matrix counterpart, as we
can see from Fig. 1f. This is due the fact that for each GMRES iteration, the former involves
the numerical flux computation, while the latter involves the computation of a matrix vector
product, which is apparently cheaper to calculate. It is worth noting that per time step the
present LU-SGS method costs approximately half of a three-stage Runge—Kutta explicit
method with a residual smoothing. However, the cost of the GMRES+LU-SGS method per
time step is not fixed, as more iterations and, thercfore, more CPU time, are required to
solve the linear system at earlier time steps. This is shown in Fig. 1f, where the convergence
history of the linear system at different time steps using the matrix-free GMRES+LU-
SGS method is displayed. Typically, only a few iterations are sufficient to meet the stop
criterion at latter time-steps. Finally, Fig. 1g illustrates the convergence history of matrix-free
LU-SGS method for different CFL number. Although, the LU-SGS method is stable for a

FIG.2. (a)Upperand lower surface mesh used for Méwing contiguration (nelem = 741,098, npoin = 136,051,
nboun = 20,762). (b) Computed pressure contours on the upper and lower surface at M., = 0.84 and o = 3.06".

15
Cc
1
o
Q
-1
0
1.5
d
i
o
Q
1
0
1.5
e
1
0.5
i=%
<
0
05 ¢
1
0
FIG. 2.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS

Computation —6—
Experiment +

0.2

Computation —o—
Experiment +

T 1

Computation —6—
Experiment +

1

0.4

0.6 0.8
X/C

-Cp

-Cp

-Cp

677

T T T T

Computation -e—
Experiment +

0.2 0.4 0.6 0.8 1
X/c

T T T T

Computation —o—
Experiment +

1
0.5
0B
-0.5
-1
0 0.2 0.4 0.6 0.8 1
X/C
1.5 T T i !
% Computation ~o—
. 000G Experiment +

0.2 0.4 0.6 0.8 1
X/C

(c) Comparison between computed and experimental surface pressure coefficient for wing section at

20% semispan. (d) Comparison between computed and experimental surface pressure coefficient for wing section
at 44% semispan. (¢) Comparison between computed and experimental surface pressure coefficient for wing
section at 65% semispan. (f) Comparison between computed and experimental surface pressure coefficient for
wing section at 80% semispan. (g) Comparison between computed and experimental surface pressure coefficient
for wing section at 90% semispan. (h) Comparison between computed and experimental surface pressure coefficient
for wing section at 95% semispan.

678 LUO, BAUM, AND LOHNER

! 0 3 T T T T T T T T T
GMRES+LU-SGS ——
05 B GMRES+ILU ----- .
LU-SGS -----
b % Explicit |
15 . i
% -2 e .
1) oo
25 F .
3+
35k
_ I ! 1 1 1 1] 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps

j 0 - T T T T T T T

GMRES+LU-SGS ——
GMRES+ILU ----- e
LU-SGS -----

Explicit - B

Log(res)

1 1 i L 1 1 i

0 2000 4000 6000 8000 10000 12000 14000 16000
CPU (Second)

FIG. 2. (i) Residual convergence history versus time steps for M6wing using different schemes: explicit,
matrix-frec LU-SGS, GMRES+ILU, and matrix-free GMRES+LU-SGS. (j) Residual convergence history versus

CPU time for M6wing using different schemes: explicit, matrix-free LU-SGS. GMRES+IL.U, and matrix-frec
GMRES+LU-SGS.

very large CFL number, the convergence history is almost indistinguishable for all the three
CFL numbers used.

Finally, the same computation has been performed on a finer mesh to study the behav-
ior of convergence history as the grid is refined. The refined mesh contains 99,683 grid
points, 533,060 elements, and 17,391 boundary points. Figures 1h and 1i show the conver-
gence histories of the residual for coarse and finer grids using the explicit method and the
matrix-free GMRES+LU-SGS method, respectively. As expected, the explicit method for
the refined mesh requires approximately twice the number of time steps to achieve the same
convergence; the behavior of convergence history for the implicit method is quite similar

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 679

as on a coarse mesh, although the rate of convergence does slow down, demonstrating that
the advantage of the present implicit method is not diminished for finer grids.

B. ONERA M6 Wing Configuration

The second, well-documented case is the inviscid transonic flow over a ONERA M6 wing
configuration. The M6 wing has a leading-edge sweep angle of 30°, an aspect of 3.8, and a
taper ratio of 0.562. The airfoil section of the wing is the ONERA “D” airfoil, which is a 10%
maximum thickness-to-chord ratio conventional section. The flow solutions are presented
at a Mach number of 0.84 and an angle of attack of 3.06. The mesh used in the computation

A ,) ,///
W, i)
NGRS s /
R
X,
RO,

SRRDa K
vﬂgiggég : %ﬂ/’;‘iillii/

/

VOO

|

/y & Y
7//)&%\:\@

e

FIG. 3. (a) Surface mesh used for Wing/Pylon/Finned-Store configuration (nelem = 1,329,694, npoin =
239,547, nboun = 27,359). (b) Computed pressure contours on the upper surafce at Mo, =0.95 and o =0°.
(c) Computed pressure contours on the lower surafce at M., =0.95 and o =0°.

680 LUO, BAUM, AND LOHNER

d T T T T
e Matrix-free GMRES+LU-SGS ——
Matrix-free LU-SGS -~~~ -
e _
2 .
& T i
A
HE
Qb 2:3:3:5:{
_4~5 1 1] 1 L
0 200 400 600 800 1000 1200
Time steps
e 0 e T T T T T T T
Matrix-free GMRES+LU-SGS ——
Matrix-frec LU-SGS ----- 7
g ‘-"\ _
& Nt i
s] “l‘.i
N
s -
Wi
_45 1 i 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
CPU (Second)

FIG. 3. (d) Residual convergence history versus time steps for Wing/Pylon/Finned-Store configuration
using matrix-frec LU-SGS and matrix-free GMRES+LU-SGS. (e) Residual convergence history versus CPU
time for Wing/Pylon/Finned-Store configuration using different schemes: matrix-frec LU-SGS and matrix-free
GMRES+LU-SGS.

consists of 741,095 elements, 136,051 grid points, and 20,762 boundary points. The upper
and surface meshes are shown in Fig. 2a. The computed pressure contours on the upper and
lower surfaces are displayed in Fig. 2b. The upper surface contours clearly show the sharply
captured lambda-type shock structure formed by the two inboard shock waves, which merge
together near 80% semispan to form the single strong shock wave in the outboard region of
the wing. The computed pressure coefficient distributions are compared with experimental
data [18] at six spanwise stations in Figs. 2c~2h. We can observe that there is only one
grid point within the shock structure; this demonstrates the sharp shock-capturing ability
of AUSM+ scheme. The results obtained compare closely with experimental data, except
at the root stations, due to lack of viscous effects. Figures 2i and 2j display a comparison

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 681

CFL=10,000 —
o5l CFL=100 ---- i

Log(res)

3.5 1 1 1 1 [1

0 1000 2000 3000 4000 5000 6000 7000 8000
CPU (Second)

L) T T
CFL=100 —

05 I CFL=10,000 ----- -
N CFL=100,000 -~

Log(res)

XTI
4t Hhihy

45 1 i H 1 1]

0 500 1000 1500 2000 2500 3000 3500
CPU (Second)

FIG. 3. (f) Effect of CFL number on convergence history for for Wing/Pylon/Finned-Store configuration
using matrix-free LU-SGS. (g) Effect of CFL number on convergence history for for Wing/Pylon/Finned-Store
configuration using matrix-free GMRES+LU-SGS.

of convergence histories among the explicit scheme, matrix-free LU-SGS scheme,
GMRES+ILU scheme, and matrix-free GMRES+LU-SGS scheme versus time steps and
CPU time, respectively. GMRES+LU-SGS methods provide the best convergence per-
formance. The present GMRES+LU-SGS method is about three times faster than the

GMRES+ILU method, about six times faster than the LU-SGS methods and 14 times
faster than its explicit method.

C. Wing/Pylon/Finned-Store Configuration

The third test case is conducted for a wing/pylon/finned-store configuration reported in
Ref. [19]. The configuration consists of a clipped delta wing with a 45° sweep composed

682 LUO, BAUM, AND LOHNER

FIG. 4. (a) Surface mesh used for computing internal supersonic flow (nclem = 542,895, npoin = 106,285,
nboun = 30,094). (b) Computed density contours for supersonic inlet flow (M,, = 3). (¢) Computed Mach number
contours for supersonic inlet flow (M,, = 3). (d) Computed pressure contours for supersonic inlet flow (M, = 3).

of a constant NACA64010 symmetric airfoil section. The wing has a root chord of 16 in.,
a semispan of 13 in., and a taper ratio of 0.134. The pylon is located at the midspan station
and has a cross section characterized by a flat plate closed at the leading and trailing edges
by a symmetrical ogive shape. The width of the pylon is 0.294 in. The four fins on the store
are defined by a constant NACA0008 airfoil section with a leading-edge sweep of 45° and
a truncated tip. The mesh used in the computation is shown in Fig. 3a. It contains 1,329,694
elements, 239,547 grid points, and 27,359 boundary points. The flow solutions are presented
at a Mach number of 0.95 and an angle of attack of 0°. Figures 3b and 3¢ show the pressure
contours on the upper and lower wing surface, respectively. Because of large size of mesh, no
attempt has been made using matrix LU-SGS and GMRES+LU-SGS methods to compute

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS

e 1 T T T T T T T
LU-SGS ——
SN Explicit -----
g A
&0
=)
A

0 200 400 600 800 1000 1200 1400 1600

Time steps
f l 1 1 i 1 1 T 1 1
0
f
afh

7 2H .

2 '

\0/0 ‘\‘

3 3k]
4+ \\\ - N
5+ |
'6] 1 1 1 1 1 1 1

0

1000 2000 3000 4000 5000 6000 7000 8000 9000
CPU (Second)
FIG. 4.

(e) Residual convergence history versus time steps for supersonic inlet configuration using different
schemes: matrix-free LU-SGS, matrix-free GMRES+LU-SGS, and explicit method. (f) Residual convergence

hlstory versus CPU time for supersonic inlet configuration using different schemes: matrix-free LU-SGS, matrix-
free GMRES+LU-SGS, and explicit method.

this problem. Figures 3d and 3e display a comparison of convergence histories between
a matrix-free LU-SGS scheme and a matrix-free GMRES+LU-SGS scheme versus time
steps and CPU time, respectively. Again, the GMRES+LU-SGS method provides faster
convergence than the LU-SGS method. Figures 3f and 3g illustrate the convergence history
using different CFL numbers of GMRES+LU-SGS and LU-SGS methods respectively.

Again, we can see that, although the LU-SGS method is stable for a very large CFL number

the convergence history is almost indistinguishable for ali the three CFL numbers used

However, a substantial gain can be achieved by using a larger CFL number for GMRES+

LU-SGS method, although no significant difference can be observed once the CFL number
is large enough.

683

684 LUO, BAUM, AND LOHNER

D. Supersonic Duct Flow

This internal inviscid supersonic flow case, taken from Nakahashi and Saito [20], repre-
sents part of a scramjet intake. The inlet Mach number is 3. The total length of the device is
[= 8.0, and the element size was set uniformly throughout the domain to § = 0.03. The mesh
shown in Fig. 4a consists of 542,895 elements, 106,285 grid points, and 30,094 boundary
points. The computed density, Mach numbers, and pressure contours are shown in Figs. 4b,

SZ

7\

S e Z

4y

)

D7~

>

o<

A

ok

9% By

c 1.2 T T T T T T T T

Vx

Blasius — A
Computation ©

eta-coordinates

FIG. 5. (a) Surface mesh used for flat plate configuration (nelem = 81,885, npoin = 15,694, nboun = 3,774).
(b) Computed Mach number contours for flat plate at M, = 0.4, @ = 0.0, and Re = 10,000. (c) Computed boundary
layer velocity profile over a fiat plate at M, = 0.4, @ = 0.0, and Re = 10,000.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 685

T T T T T T T T T
Matrix-free GMRES+LU-SGS —
Matrix-free LU-SGS -----
0 .. E xphClt"’ B

2
= "
Q .
1 .
-4 b 4
- 1 1 I) 1 L 1 l L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps
e 1 T T T T T T T T
Matrix-free GMRES+LU-SGS ——
Matrix-free LU-SGS -----
0 "-,“ Explicit n
1t 4
2 :
) : -
Q
-1
3 . A
4k |
-5 1) 1) 1) L 1

0 200 400 600 800 1000 1200 1400 1600 1800
CPU (Second)

FIG. 5. (d) Residual convergence history versus time steps for flat plate using different schemes: explicit,
matrix-free LU-SGS, and matrix-free GMRES+LU-SGS. (e) Residual convergence history versus cpu time for
flat plate using different schemes: explicit, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS.

4c, and 4d, respectively. Figures 4e and 4f illustrate the convergence history among differ-
ent numerical schemes: matrix-free LU-SGS, matrix-free GMRES+LU-SGS, and explicit
methods, respectively. It indicates that the GMRES+LU-SGS method is superior to the
LU-SGS method. CPU time comparison shows that the GMRES+LU-SGS method is about
eight time faster than the explicit method for this particular problem.

E. Laminar Flow Past a Flat Plate

In this test case, Blasius boundary layers are computed for a flat plate at a Mach number
of 0.4 and a chord Reynolds number of 10,000. The computational domain is considered
fromx=-05tox=1,y=0toy=1,and z=0to z =0.5, where the plate starts at x =0.

686 LUO, BAUM, AND LOHNER

The mesh used in the computation is shown in Fig. 5a. It contains 81,885 elements, 15,694
points, and 3774 boundary points. The computed Mach numbcr contours in the flow field
are depicted in Fig. 5Sb, where the development of a boundary layer can be clearly observed.
Figure 5¢ shows the comparison of the Blasius velocity profile and the computed velocity
profiles as scaled by the Blasius similarity law for all boundary layer points. The Blasius
velocity profile is almost identically matched by all data points with the exception of a

N
75 :
R

Y| X

A 7
7l

<

FIG. 6. (a) Surfacc mesh used for NACAO012 airfoil configuration (nelem = 697,655, npoin = 128,448,
nboun = 22,925). (b) Computed velocity vector distribution near leading edge of airfoil at M, = 0.5, o = 0.0, and
Re = 5,000.

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 687

FIG. 6. (c) Computed pressure contours on the surface at My, = 0.5, o = 0.0, and Re = 5,000. (d) Computed
Mach number contours on the surface at My, = 0.5, & = 0.0, and Re = 5,000.

few points near leading edge. The slight discrepancy for these points is attributed to the
leading edge singularity. Figures 5d and Se show a comparison of convergence histories
among different numerical schemes: matrix-free LU-SGS, matrix-free 'GMRES+LU—SGS,
and explicit methods, respectively. Itindicates that the GMRES+LU-SGS method is superior
to the LU-SGS method. CPU time comparison shows that the GMRES+LU-SGS method
is about 10 times faster than the explicit method for this particular problem.

F. Laminar Flow over a NACAOOI2 Airfoil

This test case involves a laminar flow past a NACAQ012 airfoil at a Mach number of
0.5, an angle of attack of 0°, and a chord Reynolds number of 5000. This computation was
performed to see the effectiveness of the present matrix-free GMRES+LU-SGS method for
the solution of the Navier—Stokes equations. The mesh used in the computation is shown
in Fig. 6a. It contains 697,655 elements, 128,488 grid points, and 22,925 boundary points.

688 LUO, BAUM, AND LOHNER

e 0 N T T T T T T T T T
T GMRES+LU-SGS ——
0.5 f LU-SGS ----- -
Neen Explicit -----
-1 \"\\ T -
.15 H /\V—\\,\- y
2 N
% -2 H ST T
<Q \\\
[
25 H .
3t -
35 + y
4 1 1 1 L 1 1 1 i I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps
¢ 0 = T T T
I GMRES+LU-SGS —
LU-SGS ----- -
Explicit -----
~ Neso -
&0 AN
Q ™
S X
_4] 1 1 1
0 5000 10000 15000 20000 25000

CPU (Second)

FIG. 6. () Residual convergence history versus time steps for NACAO012 airfoil using different schemes:
explicit, matrix-frec LU-SGS, and matrix-free GMRES+LU-SGS. (f) Residual convergence history versus cpu time

* for NACAQO12 airfoil using different schemes: explicit, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS.

The computed velocity vector distribution in the vicinity of the trailing edge of the airfoil
is shown in Fig. 6b, where the separation and a small recirculation bubble can be clearly
observed. The computed separation point is at 81.6% chord, which compares well to the
one obtained by Mavriplis [22]. The computed pressure and Mach-number contours are
shown in Figs. 6¢ and 6d, respectively. Figures 6¢ and 6f illustrate the convergence history
among different numerical schemes: matrix-free LU-SGS, matrix-free GMRES+LU-SGS,
and explicit methods, respectively. It indicates that the GMRES+LU-SGS method is far
superior to the LU-SGS method. CPU time comparison shows that the GMRES+LU-SGS
method is more than two orders of magnitude faster than the explicit method for this
particular problem. The effectiveness of the present matrix-free GMRES+LU-SGS method
for the solution of the Navier-Stokes equations is clearly demonstrated in this example.

O

COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 689

6. CONCLUSIONS

A matrix-free implicit method has been developed to solve the three-dimensional Navier—
Stokes and Euler equations on unstructured meshes. The developed method has been used
to compute the compressible flows around 3D complex aerodynamic configurations for a
wide range of flow conditions from subsonic to supersonic. The numerical results obtained
indicate that the use of the GMRES+LU-SGS method leads to a significant increase in
performance over the best current implicit methods, the GMRES+ILU and the LU-SGS
methods, while maintaining memory requirements that are competitive with its explicit
counterpart. In comparison to the explicit method, we demonstrate an overall speedup
factor from eight to more than one order of magnitude for all test cases. The GMRES+
LU-SGS method has also been extended and applied successfully to solve the unsteady
Euler and Navier-Stokes equations and will be reported in a later paper. The current work
is to extend the present GMRES+LU-SGS method for turbulent flow problems.

ACKNOWLEDGMENTS

This research was sponsored by the Defense Special Weapon Agency. Dr. Michael E. Giltrud served as the
technical program monitor. Partial funding for the last author was also provided by the Air Force Office of Scientific
Research. Dr. Leonidas Sakell served as the technical monitor.

REFERENCES

1. B. Stoufflet, Implicit finite element methods for the Euler equations, in Numerical Methods for the Euler
Equations of Fluid Dynamics, edited by F. Angrand (SIAM, Philadelphia, 1985).

2. J. T. Batina, Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured
dynamic meshes, AIAA J. 29(11), (1991).

3. V. Venkatakrishnan and D. J. Mavriplis, Implicit solvers for unstructured meshes, J. Comput. Phys. 105, 83
(1993).

4. D. D. Knight, A Fully Implicit Navier-Stokes Algorithm Using an Unstructured Grid and Flux Difference
Splitting, AIAA Paper 93-0875, 1993.

5. D. L. Whitaker, Three-dimensional Unstructured Grid Euler Computations Using a Fully-Implicit, Upwind
Method, AIAA Paper 93-3337, 1993.

6. H. Luo, J. D. Baum, R. Lohner, and J. Cabello, Implicit Schemes and Boundary Conditions for Compressible
Flows on Unstructured Meshes, AIAA Paper 94-0816, 1994.

7. T. J. Barth and S. W. Linton, An Unstructured Mesh Newton Solver for Compressible Fluid Flow and Its
Parallel Implementation, AIAA Paper 95-0221, 1995.

8. Y. Saad, Iterative methods for sparse linear systems, on unstructured meshes, 1996.

9. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Stat. Comp. 7(3), 89 (1988).

10. A.Jameson and S. Yoon, Lower-upper implicit schemes with multiple grids for the Euler equations, AIAA J.
25(7), (1987).

11. M. Soetrisno, S. T. Imlay, and D. W. Roberts, A Zonal Implicit Procedure for Hybrid Structured-Unstructured
Grids, AIAA Paper 94-0617, 1994.

12. 1. Men’shov and Y. Nakamura, An implicit advection upwind splitting scheme for hypersonic air flows in
thermochemical nonequilibrium, in 6tk Int. Sympos. on CFD, 1995.

13. D. Sharov and K. Nakahashi, Reordering of 3-D Hybrid Unstructured Grids for Vectorized LU-SGS Navier—
Stokes Computations, AIAA Paper 97-2102, 1997.

14. M. S. Liou, Progress towards an Improved CFD Method: AUSM+, AIAA Paper 95-1701, Jun. 1995.

690 LUO, BAUM, AND LOHNER

15.

16.

17.

20.

21

22.

. E.R.Tleim, CFD Wing/Pylon/Finned Store Mutual Interference Wind Tunnel Experiment, AEDC-TSR-91-P4

B. Van Leer, Towards the ultimate conservative difference scheme. I1. Monotonicity and conservation com-
bined in a second-order scheme, J. Comput. Phys. 14, 361 (1974).

P. L. Roe, Approximate Ricmann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43,
357 (1981).

J. D. Lohner and P. Parikh, Three-dimensional grid generation by the advancing front method, Int. J. Numer:
Methods Fluids 8, 1135 (1988).

. V. Schmitt and F. Charpin, Pressure distributions on the ONERA M6-wing at transonic Mach numbers,

Experiment Data Base for Computer Program Assessment, AGARD AR-138, 1979.

Arnold Engineering Development Center, Amold AFB, TN, Jan. 1991. ,
K. Nakahashi and E. Saitoh, Space-Marching Method on Unstructured Grid for Supersonic Flows with
Embedded Subsonic Regions, AIAA-96-0418, 1996.

H. Luo, J. D. Baum, and R. Léhner, An edge-based upwind finite element scheme for the Euler equations,
AIAA J. 32(6), (1994).

D. J. Mavriplis and A. Jameson, Multigrid solution of the Navier~Stokes equations on triangular meshcs,
AIAA J. 28(8), (1990).

APPENDIX 2: PARALLEL GRID GENERATION

17

AIAA-00-1005

A Parallel Advancing Front

Grid Generation Scheme

Rainald Lohner
George Mason University, Fairfax, VA

38th Aerospace Sciences
Meeting & Exhibit
10-13 January 2000 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

ATAA-00-1005

A PARALLEL ADVANCING FRONT GRID GENERATION SCHEME

Rainald Lohner

Institute for Computational Science and Informatics
M.S. 4C7, George Mason University
Fairfax, VA 22030-4444, USA

ABSTRACT

A parallel advancing front scheme has been developed. The domain to be gridded is first subdivided spatially
using a relatively coarse octree. Boxes are then identified and gridded in parallel. A scheme that resembles
closely the advancing front technique on scalar machines is recovered by only considering the boxes of the
active front that generate small elements. The procedure has been implemented on the SGI Origin class
of machines using the shared memory paradigm. Timings for a variety of cases show speedups similar to
those obtained for flow codes. The procedure has been used to generate grids in excess of a hundred million

elements.

Keywords. Unstructured Grid Generation, Parallel Computing, CFD.

1. INTRODUCTION

The widespread availability of parallel machines with
large memory, solvers that can harness the power of
these machines, and the desire to model in ever in-
creasing detail geometrical and physical features has
lead to a steady increase in the number of points used
in field solvers. Grids in excess of 107 elements have
become common for production runs in Computa-
tional Fluid Dynamics (CFD) [Bau93, Bau95, Jou98,
Yos98, Mav99] and Computational Electromagnetics
(CEM) [Dar97,Mor97]. The expectation is that in the
near future grids in excess of 108 — 10° elements will
be required. While many solvers have been ported
to parallel machines, grid generators have lagged be-
hind. For applications where remeshing is an integral
part of simulations, e.g. problems with moving bod-
ies [L6h90, Mes93, Mes95, Bau96, Kam96, Loh98a,
Has98] or changing topologies [Bau98, Bau99], the
time required for mesh regeneration can easily con-
sume more than 50% of the total time required to
solve the problem. Faced with this situation, a num-
ber of efforts have been reported on parallel grid gen-
eration [L6h92, dCo9%4, Sho95, dCo95, Oku96, Che97,
Oku97, Sai99].

The two most common ways of generating unstruc-
tured grids are the Advancing Front Technique (AFT)
[Per87, Per88, Loh88a,b, Per90, Per92, Jin93, Fry94,
L6h96)] and the Generalized Delaunay Triangulation
(GDT) [Bak89, Geo91, Wea92, Wea94, Mar95]. The
AFT introduces one element at a time, while the

Copyright ©2000 by the author. Published by the
ATAA with permission.

GDT introduces a new point at a time. Thus, both
of these techniques are, in principle, scalar by na-
ture, with a large variation in the number of opera-
tions required to introduce a new element or point.
While coding and data structures may influence the
scalar speed of the ‘core’ AFT or GDT, one often
finds that for large-scale applications, the evaluation
of the desired element size and shape in space, given
by background grids, sources or other means [Loh96]
consumes the largest fraction of the total grid genera-
tion time. Unstructured grid generators based on the
AFT may be parallelized by invoking distance argu-
ments, i.e. the introduction of a new element only af-
fects (and is affected by) the immediate vicinity. This
allows for the introduction of elements in parallel, pro-
vided that sufficient distance lies between them.

Several years ago, the author and his colleagues in-
troduced a parallel AFT based on the subdivision
of the background grid [Loh92, Sho95]. While used
for some demonstration runs, this scheme was not
general enough for a production environment. The
background grid had to be adapted in order to be
sufficiently fine for a balanced workload. As only
background grid elements covering the domain to be
gridded were allowed, complex in/out tests had to be
carried out to remove refined elements lying outside
the domain to be gridded. Furthermore, element size
specified at CAD entities could not be ‘propagated’
into the domain, as is the case in the scalar AFT,
disabling an option favoured by many users and ren-
dering many grid generation data sets unusable. The
otherwise positive experience gained with this parallel
AFT prompted the search for a more general paral-
lel AFT. The key requirement was a parallel AFT

that changes the current, evolved and mature scalar
AFT as little as possible, while achieving significant
speedups on common parallel machines. This implies
that the parallelism should be applied at the level of
the current front, and not globally.

2. PARALLEL GRIDDING SCHEME

The advancing front technique attempts to introduce
an element at a time into an as yet ungridded domain
by eliminating the face generating the smallest new
element from the front [L6h88a,b]. Given that the
introduction of an element only affects its immedi-
ate neighbourhood, one could, in principle, introduce
many elements at the same time, provided they are
sufficiently far apart. A convenient way of delimiting
the possible zones where elements may be introduced
by each processor is via boxes. These boxes may be
obtained in a variety of ways, i.e. via bins, binary
recursive trees, or octrees. We have found the octree
to be the best of these possibilities, particularly for
grids with a large variation of element size. In order
to recover a parallel gridding procedure that resem-
bles closely the advancing front technique on scalar
machines, only the boxes covering the active front in
regions where the smallest new elements are being in-
troduced are considered. After these boxes have been
filled with elements, the process starts anew: a new
octree is built, new boxes are created and meshed in
parallel. The procedure is summarized schematically

for a 2-D case in Figure 1.
)
éé;;;:ji) e By

a) f’-.\\\\
= Current Front

b}

KI_‘
O

R 1/'\ o) n] Ol Front
4 - 4
AL]
) —-"l N —-"17 h ——"I

GHD

Figure 1 Parallel Grid Generation

At the end of each parallel gridding pass, each one of
the boxes gridded can have an internal boundary of
faces. For a large number of boxes, this could result
in a very large number of faces for the active front.
This problem can be avoided by shifting the boxes
slightly, and then regridding them again in parallel,
as shown in Figure 2. This simple technique has the
effect of eliminating almost all of the faces between
boxes with a minor modification of the basic parallel
gridding algorithm.

¢

AIAA-00-1005

~
~

Figure 2 Shift and Regrid Technique

mmememcccecge—mm—eeamaq
1

If we define as d,;, the minimum element size in the
active front, and as s;,;, the minimum box size in
which elements are to be generated, the paralle] AFT
proceeds as follows:
WHILE: There are active faces left:

- Form an octree with minimum octant size Spin
for the active points;
Retain the octants that have faces that will gen-
erate elements of size di to ¢; - dpin;
- If too many octants are left: agglomerate them
into boxes;
DO ISHFT=0,2:

- IF: ISHFT.NE.O:

Shift the boxes by a preset amount;
- ERDIF
- Generate, in parallel, elements in these
boxes, allowing only elements up to a size
of ¢1 - dmin;

- ENDDO

- Increase dmin = 1.5 * dpnin, Smin = 1.5 * Smin;
ENDWHILE

The increase factor allowed is typically in the range
c; = 1.5 — 2.0. The shift vectors are given by

s=6,(1,1,1), 8 = ' min(0.5* smin, 2.0% drnin) -

We remark that the octree used to compute the boxes
for parallel grid generation is very coarse compared
to the element size specified by the user. The edge-
length of the finest octree box is of the order of 20
to 50 times the specified element size. This implies
that its construction is very fast, and can be accom-
plished on a single processor without discernable CPU
penalty.

3. WORK ESTIMATION AND BALANCE

The procedure outlined above will work optimally if
each box requires approximately the same CPU time
to complete its grid. This implies that a good work
estimate should be provided. Given that the boxes
are not body conforming, even for uniform grids the
volume to be gridded can vary drastically from box to
box. A balanced workload can be obtained by starting

with many boxes, estimating the work to be done for
each of them, and then gridding in parallel groups
of boxes with similar workload.

a) b)

O P77
W 24
2
Yerd

¢) d)

Figure 3 Estimation of Volume to be Gridded

The volume to be gridded is estimated by the march-
ing cubes procedure shown schematically in Figure 3.
Given the dimensions of the box, and the list of ac-
tive faces, the box is first subdivided into voxels (i.e.
small cubes). In a first pass over the faces, the voxels
cut by faces are marked as ‘inside the domain’, and
an average normal is computed for each cut voxel.
This normal information is used in a subsequent pass
over the voxels in order to mark the neighbours of
cut voxels as either inside or outside the domain to
be gridded. The remaining voxels are then marked
as inside or outside in several sweeps over the vox-
els. These sweeps are carried out until no further
voxels can be marked. Finally, a work estimate is ob-
tained by summing the expected number of elements
in each of the voxels marked as inside the domain to
be gridded. This work estimation procedure is done
in parallel.

Given the estimated work in each of the boxes, the
load is balanced in such a way that each processor
receives a similar amount of work. The assumption is
made that the number of boxes is always larger than
the number of processors. Should this not be the
case, the boxes are subdivided further (8 new boxes
for each box). If any given box has a work estimate
that lies above the average work per processor, this
box is also subdivided further. This ‘greedy’ work
balancing algorithm may be summarized as follows:

a) Obtain a minimum nr. of active boxes:

WHILE: The number of boxes is smaller than the num-
ber of processors:

- Subdivide boxes (1:8);
ENDWHILE

ATAA-00-1005

b) Balance the work:

WHILE: Work unbalanced

- Estimate, in parallel, the work for each box;

- Obtain average work per processor;

- IF: A box has a work estimate above average:
Subdivide it further (1:8) and balance again;

- ENDIF

- Attempt to group boxes in such a way that the
work in each group is close to average;

- IF: Good work balance impossible:
Subdivide boxes with highest work estimate (1:8)
and balance again;
- ENDIF
ENDWHILE

In many instances, boxes within a group will share
a common face. In order to avoid the (unnecessary)
buildup of many faces at the borders of boxes, an
attempt is made to agglomerate these neighbouring
boxes within groups. This is done recursively by
checking, for any pair of boxes, if two of the dimen-
sions are the same and the boxes are coincident in
the remaining dimension. If so, the boxes are merged.
Boxes are merged recursively, until no pair of boxes
passes the test outlined above.

4. MESH IMPROVEMENT

After the generation of the mesh using the parallel
advancing front technique has been completed, the
mesh quality is improved by a combination of several
algorithms, such as:

- Diagonal swapping,

- Removal of Bad Elements, and

- Laplacian smoothing,.

4.1 Diagonal Swapping
Diagonal swapping attempts to improve the quality
of the mesh by reconnecting locally the points in a

different way. Examples of possible 3-D swaps are
shown in Figures 4,5.

Figure 4 Diagonal Swap Case 2:3

Figure 5 Diagonal Swap Case 6:8

The optimality criterion used is the one proposed by
George (1999).

hmaxS
Q= |4

where hpqaz,S and V' denote the maximum edge
length, total surface area and volume of a tetrahe-
dron. The number of cases to be tested can grow
factorially with the number of elements surrounding
an edge. Figure 6 shows the possibilities to be tested
for 4,5 and 6 elements surrounding an edge.

44

58

NIZASIgY
VIZISHIAN
Qe v
QD2
Al

Figure 6 Swapping Cases

Given that these tests are computationally intensive,
considerable care is required when coding a fast di-
agonal swapper. Techniques that were used in the
present implementation include:

- Treatment of bad (Q > Q:01), untested elements
only;

- Processing of elements in an ordered way, start-
ing with the worst (highest chance of reconnec-
tion);

- Rejection of bad combinations at the earliest pos-
sible indication of worsening quality;

- Marking of tested and unswapped elements in
each pass.

As stated before, the computationally intensive part
of any diagonal swapping is sifting through all possi-
bilities in order to find a better local point connectiv-
ity. One observes that a very large number of tests are

.
I3

AIAA-00-1005

required to obtain an improvement. This implies that
parallelizing only the checking portion of a diagonal
swapper, which can easily be done as no swapping
actually occurs, will yield very good speedups. The
parallel swapper can then be summarized as follows:
- WBILE: There are bad, untested elements in the
heap:

- Check the worst elements in parallel;

- Reconnect if possible, and the neighbouring
elements have not been reconnected (scalar,
integer);

- Remember swapped elements;

- ENDWHILE

4.2 Removal of Bad Elements

A straightforward way to improve a mesh contain-
ing bad elements is to get rid of them. For tetrahe-
dral grids this is particularly simple, as the removal of
an internal edge does not lead to new element types
for the surrounding elements. Once the bad elements
have been identified (in parallel), they are compiled
into a list and interrogated in turn. An element is
removed by collapsing the points of one of the edges,
as shown in Figure 7.

Figure 7 Removal of Element

This operation also removes all the elements that
share this edge. It is advisable to make a check which
of the points of the edge should be kept: point 1,
point 2, or a point somewhere on the edge (e.g. the
mid-point). This implies checking all elements that
contain either point 1 or point 2. This procedure of
removing bad elements is simple to implement and
relatively fast. On the other hand, it will not tend to
improve the overall quality of the mesh. It is therefore
used mainly in a pre-smoothing or pre-optimization
stage, where its main function is to eradicate elements
of very bad quality from the mesh.

4.3 Laplacian Smoothing

A number of smoothing techniques are lumped un-
der this name. The edges of the triangulation are as-
sumed to represent springs. These springs are relaxed
in time using an explicit time stepping scheme, until
an equilibrium of spring-forces has been established.
Because ‘globally’ the variations of element size and
shape are smooth, most of the non-equilibrium forces
are local in nature. This implies that a significant
improvement in mesh quality can be achieved rather

quickly. The force exerted by each spring is propor-
tional to its length and along its direction. Therefore,
the sum of the forces exerted by all springs surround-
ing a point can be written as:

ns;

fi = cZ(x,- -X;) ,
i=1

where ¢ denotes the spring constant, x; the coordi-
nates of the point, and the sum extends over all the
points surrounding the point. The time-advancement
for the coordinates is accomplished as follows:

Ax,- = At—Lfi
ns;

At the surface of the computational domain, no move-
ment of points is allowed, i.e. Ax = 0. Usually,
the timestep (or relaxation parameter) is chosen as
At = 0.8, and 5-6 timesteps yield an acceptable
mesh. The parallelization of the Laplacian smooth-
ing is similar to that of any other field solver. The
loops over the elements/edges are colored so that
cash misses are minimized, pipelining does not lead
to memory contingencies and cache-line overwrite is
avoided [L6h98b]. The application of the Laplacian
smoothing technique will yield an overall improve-
ment of grid quality, but can result in inverted or
negative elements. These negative elements are elim-
inated. It has been found advisable to remove not
only the negative elements, but also all elements that
share points with them. This element removal gives
rise to voids or holes in the mesh, which are regridded
using the advancing front technique.

5. IMPLEMENTATION

The procedure described above was implemented us-
ing the shared memory (i.e. c$doacross) paradigm
on the SGI Origin 2000. Although this is a
distributed-memory machine, it can be programmed
as a shared-memory machine. This choice was
adopted for the following reasons:

- Coding for a shared-memory environment is
much simpler than for a distributed-memory en-
vironment. The operating system takes care of
most of the inherent message passing, communi-
cation conflicts, etc., relieving the user from this
task;

- The production codes used in conjunction with
the grid generator scale well using the shared-
memory paradigm [L6h98b]. Even on 32 proces-
sors, more than 50% of the theoretical speedup is
achieved. Figure 8 shows the speedups obtained
for a steady compressible flow problem using an
edge-based, upwind solver on different computer
platforms. Note that the speeds obtained using

|

ATAA-00-1005

the shared and distributed memory paradigms
are comparable.

- For the last years, all of the large-scale produc-
tion runs carried out by the author and his col-
leagues [L6h98a, Loh98c, Bau98, Bau99] were
performed on these machines, using the shared-
memory paradigm,;

- The SGI Origin 2000 has become the dominant
platform within the High-Performance Comput-
ing sites in the US; at present, there are more SGI
Origin 2000 processors that those of all other ven-
dors combined; the expectation is that this trend
will not change drastically in the foreseeable fu-
ture.

While some of the reasons stated above have to do
with particular circumstances, the basic ideas of the
proposed algorithms are general, and may be coded
within a distributed memory framework with explicit
message passing.

32

—.—

tdeal
SGI-02K SHM -+

HP-DAX MPI -o--

Speedup

1 2 4 8 16 32
Nr. of Processors

Figure 8 Performance of FEFLO on Different Platforms

6. EXAMPLES

The proposed parallel advancing front scheme has
been used extensively over the last year in a pro-
duction environment. We include a sampling of ge-
ometries gridded, highlighting the characteristics of
the proposed scheme. The timings for all examples
include surface gridding, mesh generation and mesh
improvement, i.e. they can considered representative
of the timings obtained in a production environment.
All timings were obtained on SGI Origin 2000 servers.

6.1 Cube: This academic example is included here to
see how the procedure works in the ‘best case sce-
nario’. The unit cube is to be gridded with a uni-
form mesh of approximaterly 1 million tetrahedra.
Although this is not a large grid, the timings shown
in Figure 9 are illustrative.

8 " .
®
7} % Speedup Ideal
" Speedup SGI-02K v 1”3
s " Time SGI-02K - 3
.] ‘%
doon B ®
5 . s
@ 4t /,// |
3 ,’/" 5
Pl - a0 2
7 i g
2 | . . T, :
P e 200 O
1t)
0 A |

Nr. of Processors

Figure 9 Cube: Speedups Obtained

6.2 Aneurism: This example is taken from a hemody-
namic analysis recently conducted for this particular
geometry. The outline of the domain, grid, as well as
some sample results are shown in Figure 10.1.

Figure 10.1 Aneurism

ATAA-00-1005

vary widely due to geometric features.

6.3 Garage: This example was taken from a blast sim-
ulation recently carried out for an office complex. The
outline of the domain is shown in Figure 11.1.

Figure 11.1 Garage: Wireframe

The final uniform mesh had approximately 9.2 mil-
lion tetrahedra. The speedup obtained is shown in
Figure 11.2. As before, the parallel mesher was more
efficient for this finer grid than for the unit cube, even
though the volume to be gridded in each box can vary
widely due to geometric features.

20 10000
18} s Speedslg lge?é
i Speedup SGI-02K ----w-—-
16+ 1 7 Time SGI-O2K - 1 8000 [
L N - &
§ 12 ///' 4 6000 g
g 0 | il c
[1 g 1 4000 %
“ o
6 . g 5
u‘ L
4 2000 ©
2 e S
0

. : 0
8 10 12 14 16 18 20
Nr. of Processors

0 2 4 6

Figure 11.2 Garage: Speedups Obtained

16 y 'Ideal -
. Speedup Idea! [
14} | Speedup SGI-O2K -w-—
i Time SGHO2K - -w--
“! 12500 %
8
2]
a 101 g o E
B g :
s * g ’-
§ - 11500 ¢«
@ g g
6} ! g E
'u‘, ,.-’/ 1™ g
ol e ?
/J 0
‘| T e 500
0 0

0 2 4 6 8 10 12 14 16
Nr. of Processors

Figure 10.2 Aneurism: Speedups Obtained

The final uniform mesh had approximately 2.7 mil-
lion tetrahedra. The speedup obtained is shown in
Figure 10.2. As one can see, the parallel mesher was
more efficient for this finer grid than for the unit cube,
even though the volume to be gridded in each box can

6.4 Tysons Corner: This example was taken from
a dispersion simulation recently carried out for this
well-known shopping center. The outline of the do-
main is shown in Figures 12.1,12.2.

Figure 12.1 Tysons Corner: Wireframe (W)

Figure 12.2 Tysons Corner: Wireframe (N)

The final mesh had approximately 16 million tetrahe-
dra. The smallest and largest specified element side
lengths were 230 cm and 1400 cm respectively. The

speedup obtained is shown in Figure 12.3.

Speedup

16

122}

Ty

o N O O @
T T T T

Spéedup'ldeal
Speedup SGI-O2K —w—
Time SGI-02K ---w---

20000

1 18000
1 16000
1 14000

12000
10000

{ 8000
1 6000
1 4000

-4 2000

4 6 8 10 12 14 18

Nr. of Processors

Generation Time (Secs)

Figure 12.3 Tysons Corner: Speedups Obtained

6.5 Space Shuttle: This example is included here be-
cause it is typical of many aerodynamic data sets.
The outline of the domain is shown in Figure 13.1.

Figure 13.1 Space Shuttle: Outline of Domain

The surface triangulation of the final mesh, which had
approximately 4 million tetrahedra, is shown in Fig-
ure 13.2. The smallest and largest specified element
side lengths were 5.08 cm and 467.00 cm respectively,

ATAA-00-1005

i.e. an edge-length ratio of approximately 1 : 10? and
a volume ratio of 1 : 105. The spatial variation of ele-
ment size was specified via approximately 200 sources

[L5h96).

=0

Figure 13.2 Space Shuttle:

29
e

<7
S
S

<)
=
3
W A,

Sawas
SIS

=

ST

eSVISTANLY

=y

Surface Mesh

16 — eedup deal - -
Speedup Ideal
14| % Speedup SGHOPK e
L Time SGI-OZK\ ----------- "
12 " §
@
E 3000 2
| £
g ° |
P, g
¥ 2000 5
................] °
4 el g
e 4 1000 ©
2 sl
-/
0 "
0 2 4 6 8 10 12 14 16

Nr. of Processors

Figure 13.3 Space Shuttle: Speedups Obtained

The speedup obtained is shown in Figure 13.3. Fi-
nally, the results of an Euler run for an incoming
Mach-nr. of M = 2.0 and angle of attack of o = 1.1°

are shown in Figure 13 .4.

e\ Ry V ‘
%)'@“L;

Figure 13.4 Space Shuttle: Surface Pressures

6.6 Pilot Fjecting From F18: Problems with mov-
ing bodies often require many remeshings during the
course of a simulation. The case shown here was taken
from a pilot ejection simulation recently conducted.
The outline of the domain is shown in Figure 14.1.
The surface triangulation of the final mesh, which had
approximately 14 million tetrahedra, is shown in Fig-
ure 14.2. The smallest and largest specified element
side lengths were 0.65 cm and 250.00 cm respectively,
i.e. an edge-length ratio of approximately 1 : 4 - 102
and a volume ratio of 1 : 5.6 - 107. The spatial vari-
ation of element size was specified via approximately
110 sources [L6h96).

A P
R

VAN
~
S
RO

X
Al
SR

ANV,
5K

Tl

P
<
)

10 Speedup Ideat
SGI-O2K 2.5Mtet ~-w-—
8 SGI-02K 13.9Mtet ---w--
o
3
6
2
[
4t
2 L
0 .
0 2 4 6 8 10 12

Nr. of Processors

Figure 14.3 F18 Pilot Ejection: Speedups Obtained

-

ATAA-00-1005

The speedup obtained for two different grid sizes is
displayed in Figure 14.3.

As could be seen from the previous examples, the grid
generator certainly scales well with the number of pro-
cessors. As with many other areas where parallel pro-
cessing is being attempted, scalability improves with
the amount of work required. The larger the grids,
the better the scalability. One can also observe that
for each case the ‘scalability slope’ is somewhat dif-
ferent, ranging from almost perfect for the garage to
a 1:3 asymptote for the Shuttle. Closer inspection re-
vealed that for the Shuttle, although the final mesh
contains 4 million elements, the number of elements
created in each parallel pass over increasing element
sizes was rather modest, never exceeding 0.5 million
elements. Thus, the inherent parallelism of this prob-
lem is rather low.

7. CONCLUSIONS AND OUTLOOK

A parallel advancing front scheme has been devel-
oped. The domain to be gridded is first subdivided
spatially using a relatively coarse octree. Boxes are
then identified and gridded in parallel. A scheme
that resembles closely the advancing front technique
on scalar machines is recovered by only considering
the boxes of the active front that generate small ele-
ments. The procedure has been implemented on the
SGI Origin class of machines using the shared mem-
ory paradigm. Timings for a variety of cases show
speedups similar to those obtained for flow codes. The
procedure has been used to generate grids for a large
variety of cases, and is nearing production maturity.
Current work is focusing on improved work prediction
algorithms, as it is found that in going to a larger
number of processors, any small imbalance incurs a
heavy CPU penalty.

8. ACKNOWLEDGEMENTS

This research was partially supported by AFOSR,
with Dr. Leonidas Sakell as the technical monitor.

9. REFERENCES

(Bak89] T.J. Baker - Developments and Trends in
Three-Dimensional Mesh Generation. Appl. Num.
Math. 5, 275-304 (1989).

[Bau93] J.D. Baum, H. Luo and R. Lohner - Numeri-
cal Simulation of a Blast Inside a Boeing 747; AIAA-
93-3091 (1993).

[Bau95] J.D. Baum, H. Luo and R. Lohner - Numer-
ical Simulation of Blast in the World Trade Center;
ATAA-95-0085 (1995).

[Bau96] J.D. Baum, H. Luo, R. Lohner, C.
Yang, D. Pelessone and C. Charman - A Coupled

Fluid/Structure Modeling of Shock Interaction with
a Truck; AIAA-96-0795 (1996).

[Bau98] J.D. Baum, H. Luo and R. Lohner - The Nu-
merical Simulation of Strongly Unsteady Flows With
Hundreds of Moving Bodies; AIAA-98-0788 (1998).

[Bau99] J.D. Baum, H. Luo, E. Mestreau, R. Lohner,
D. Pelessone and C. Charman - A Coupled CFD/CSD
Methodology for Modeling Weapon Detonation and
Fragmentation; AIAA-99-0794 (1999).

[Che97] L.P. Chew, N. Chrisochoides and F. Sukup -
Parallel Constrained Delaunay Meshing; Proc. 1997
Workshop on Trends in Unstructured Mesh Genera-
tion, June (1997)

[dCo94] H.L. de Cougny, M.S. Shephard and C. Oz-
turan - Parallel Three-Dimensional Mesh Generation;
Computing Systems in Engineering 5, 311-323 (1994).

[dCo95] H.L. de Cougny, M.S. Shephard and C. Oztu-
ran - Parallel Three-Dimensional Mesh Generation on
Distributed Memory MIMD Computers; Tech. Rep.
SCOREC Rep. # 7, Rensselaer Polytechnic Institute
(1995).

[Dar97] E. Darve and R. Lohner - Advanced
Structured-Unstructured Solver for Electromagnetic
Scattering from Multimaterial Objects; AIAA-97-
0863 (1997).

[Fry94] J. Frykestig - Advancing Front Mesh Gener-
ation Techniques with Application to the Finite El-
ement Method; Pub. 94:10, Chalmers University of
Technology; Géteborg, Sweden (1994).

[Geo91] P.L. George, F. Hecht and E. Saltel - Au-
tomatic Mesh Generator With Specified Boundary;
Comp. Meth. Appl. Mech. Eng. 92, 269-288 (1991).

[Geo99] P.L. George - Tet Meshing: Construction,
Optimization and Adaptation; Proc. 8th Int. Meshing
Roundtable, South Lake Tahoe, October (1999).

[Has98] O. Hassan, L.B. Bayne, K. Morgan and N. P.
Weatherill - An Adaptive Unstructured Mesh Method
for Transient Flows Involving Moving Boundaries; pp.
662-674 in Computational Fluid Dynamics 98 (K.D.
Papailiou, D. Tsahalis, J. Périaux and D. Knorzer
eds.) Wiley (1998).

[Jin93] H. Jin and R.I. Tanner - Generation of Un-
structured Tetrahedral Meshes by the Advancing
Front Technique; Int. J. Num. Meth. Eng. 36, 1805-
1823 (1993).

[Jou98] W. Jou - Comments on the Feasibility of
LES for Commercial Airplane Wings; AIAA-98-2801
(1998).

ATAA-00-1005

[Kam96] A. Kamoulakos, V. Chen, E. Mestreau and
R. Lohner - Finite Element Modelling of Fluid/ Struc-
ture Interaction in Explosively Loaded Aircraft Fuse-
lage Panels Using PAMSHOCK/ PAMFLOW Cou-
pling; Conf. on Spacecraft Structures, Materials and
Mechanical Testing, Noordwijk, The Netherlands,
March (1996).

[L6h88a] R. Lohner - Some Useful Data Structures for
the Generation of Unstructured Grids; Comm. Appl.
Num. Meth. 4, 123-135 (1988).

[Loh88b] R. Lohner and P. Parikh - Three-
Dimensional Grid Generation by the Advancing Front
Method; Int. J. Num. Meth. Fluids 8, 1135-1149
(1988).

[L6h90] R. Lohner - Three-Dimensional Fluid-
Structure Interaction Using a Finite Element Solver
and Adaptive Remeshing; Comp. Sys. in Eng. 1, 2-4,
257-272 (1990).

[Loh92] R. Lohner, J. Camberos and M. Merriam -
Parallel Unstructured Grid Generation; Comp. Meth.
Appl. Mech. Eng. 95, 343-357 (1992).

[L6h96] R. Lohner - Progress in Grid Generation via
the Advancing Front Technique; Engineering with
Computers 12, 186-210 (1996).

[L6h98a) R. Lohner, C. Yang, J. Cebral, J.D. Baum,
H. Luo, D. Pelessone and C. Charman - Fluid-
Structure-Thermal Interaction Using a Loose Cou-
pling Algorithm and Adaptive Unstructured Grids;
AIAA-98-2419 [Invited] (1998).

[L6h98b] R. Lohner - Renumbering Strategies for
Unstructured- Grid Solvers Operating on Shared-
Memory, Cache- Based Parallel Machines; Comp.
Meth. Appl. Mech. Eng. 163, 95-109 (1998).

[L6h98c] R. Lohner, C. Yang and E. Ofate - Vis-
cous Free Surface Hydrodynamics Using Unstruc-
tured Grids; Proc. 22nd Symp. Naval Hydrodynam-
ics, Washington, D.C., August (1998).

[Mar95] D.L. Marcum and N.P. Weatherill - Unstruc-
tured Grid Generation Using Iterative Point Insertion
and Local Reconnection; AIAA J. 33, 9, 1619-1625
(1995).

[Mav99] D.J. Mavriplis and S. Pirzadeh - Large-Scale
Parallel Unstructured Mesh Computations for 3-D
High-Lift Analysis; JCASE Rep. 99-9 (1999).

[Mes93] E. Mestreau, R. Lohner and S. Aita -
TGV Tunnel-Entry Simulations Using a Finite El-
ement Code with Automatic Remeshing; AIAA-93-
0890 (1993).

[Mes95] E. Mestreau and R. Lohner - Airbag Simula-
tion Using Fluid/Structure Coupling; AIAA-96-0798
(1996).

[Mor97] K. Morgan, P.J. Brookes, O. Hassan and
N.P. Weatherill - Parallel Processing for the Simu-
lation of Problems Involving Scattering of Electro-
Magnetic Waves; in Proc. Symp. Advances in Com-
putational Mechanics (L. Demkowicz and J.N. Reddy
eds.) (1997).

[Oku96] T. Okusanya and J. Peraire - Parallel Un-
structured Mesh Generation; Proc. 5th Int. Conf.
Num. Grid Generation in CFD and Related Fields,
Mississippi, April (1996).

[Oku97] T. Okusanya and J. Peraire - 3-D Par-
allel Unstructured Mesh Generation; Proc. Joint

ASME/ASCE/SES Summer Meeting (1997).

[Per87] J. Peraire, M. Vahdati, K. Morgan and O.C.
Zienkiewicz - Adaptive Remeshing for Compressible
Flow Computations; J. Comp. Phys. 72, 449-466
(1987).

[Per88] J. Peraire, J. Peiro, L. Formaggia K. Morgan
and O.C. Zienkiewicz - Finite Element Euler Calcula-
tions in Three Dimensions; Int. J. Num. Meth. Eng.
26, 2135-2159 (1988).

[Per90] J. Peraire, K. Morgan and J. Peiro - Unstruc-
tured Finite Element Mesh Generation and Adaptive
Procedures for CFD; AGARD-CP-464, 18 (1990).

10

.-

ATAA-00-1005

[Per92] J. Peraire, K. Morgan, and J. Peiro - Adaptive
Remeshing in 3-D; J. Comp. Phys. (1992).

[Sai99] R. Said, N.P. Weatherill, K. Morgan and N.A.
Verhoeven - Distributed Parallel Delaunay Mesh Gen-

eration; to appear in Comp. Meth. Appl. Mech. Eng.
(1999).

[Sho95] A. Shostko and R. Lohner - Three-
Dimensional Parallel Unstructured Grid Generation;
Int. J. Num. Meth. Eng. 38, 905-925 (1995).

[Wea92] N.P. Weatherill - Delaunay Triangulation in
Computational Fluid Dynamics; Comp. Math. Appl.
24, 5/6, 129-150 (1992).

[Wea94] N.P. Weatherill and O. Hassan - Efficient
Three-Dimensional Delaunay Triangulation with Au-
tomatic Point Creation and Imposed Boundary Con-
straints; Int. J. Num. Meth. Eng. 37, 2005-2039
(1994).

[Yos98] S. Yoshimura, H. Nitta, G. Yagawa and H.
Akiba - Parallel Automatic Mesh Generation Method
of Ten-Million Nodes Problem Using Fuzzy Knowl-
edge Processing and Computational Geometry; Proc.
4th World CongComp. Mech. Buenos Aires, Ar-
gentina, July (1998).

APPENDIX 3: NAVIER-STOKES GRIDDING

18

AlAA-99-0662

Generation of Unstructured Grids

Suitable for RANS Calculations

Rainald Lohner |

George Mason University, Fairfax, VA

37th AIAA Aerospace Sciences
Meeting and Exhibit
January 11-14, 1999 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

ATAA-99-0662

GENERATION OF UNSTRUCTURED GRIDS SUITABLE FOR RANS CALCULATIONS

Rainald Lohner

Institute for Computational Science and Infor?natics
M.S. 4C7, George Mason University
Fairfax, VA 22030-4444, USA

ABSTRACT

A procedure for the generation of highly stretched grids suitable for Reynolds-Averaged Navier-Stokes
(RANS) calculations is presented. In a first stage, an isotropic (Euler) mesh is generated. In a second stage,
this grid is successively enriched with points in order to achieve highly stretched elements. The element
reconnection is carried out using a constrained Delaunay approach. Points are introduced from the regions
of lowest stretching towards the regions of highest stretching. The procedure has the advantages of not re-
quiring any type of surface recovery, not requiring extra passes or work to mesh concave ridges/corners, and
guarantees a final mesh, an essential requirement for industrial environments. Given that point placement
and element quality are highly dependent for the Delaunay procedure, special procedures were developed in

order to obtain optimal point placement.

1. INTRODUCTION

Many problems of Computational Mechanics are
characterized by a very strong anisotropy in the spa-
tial variation of the fields of interest. A typical exam-
ple in fluid mechanics is a boundary layer. For lam-
inar flow, the variations in the streamwise direction
will be 3-5 orders of magnitude less than normal to it.
The same applies to turbulent flows simulated using
the Reynolds-Averaged Navier-Stokes (RANS) equa-
tions with suitable turbulence models. The reliable
generation of high quality grids for RANS simulations
has been attempted with varying degrees of success
by several authors during the last decade (Nakahashi,
1987; Kallinderis, 1992; Lohner, 1993; Pirzadeh, 1994;
Marcum, 1995; Pirzadeh, 1996; Peraire and Mor-
gan, 1996-1998). Given that the generation of highly
stretched grids is not trivial, and that computing
power is increasing steadily, the immediate question
that comes to mind is when RANS simulations will
be replaced by Large-Eddy Simulations (LES) or even
Direct Navier-Stokes (DNS) simulations. Let us as-
sume an optimal mesh for LES simulations. This
could be an adaptive Cartesian grid that consists of
typical (large) Euler cells in the field and very small
cells in the boundary layers in order to capture all
relevant scales. Clearly, most points/cells will be lo-
cated in the boundary layer regions. Denoting by N,
the number of points and by h the characteristic cell
size, we have:

BLVolume
Npm —p5—

- Copyright (©1999 by the author. Published by the
ATAA with permission.

If we assume, conservatively, a laminar B-747 wing
with a chord Reynolds-nr. of Re,, = 10°, and fur-
thermore assume that the boundary layer obeys the
flat plate formula:

Slam _ 5.5
zr Vv Re,
the boundary layer thickness will be approximately
§ =~ 5-1072 m, implying an (isotropic) element size
of at most A ~ 5-10~% m. The resulting number of
gridpoints is then:

_ N 'Aw:'ng _

. 2
Np — 10-250 m _ 1010

h* T (5.10-* m)®

Current RANS production runs operate with N, =
107. From Moore’s Law (the doubling of computing
power every 18 months), we can foresee LES grids in
15 years. As far as CPU is concerned, the number of
timesteps N required to advect a particle accurately
across the wing is proportional to the number of cells,
ie.

. dm

T 5-10-%m
Assuming the number of floating point operations per

point per timestep to be Ny, = 0(103), this would
result in an operation count of

N, = 0(10%

Nops = 0(10') - 0(10%) - 0(10%) = O(10'")

Given that the limit of human patience lies some-
where around O(10%) sec, the operation count ob-
tained above implies a CPU performance requirement

of O(10'*) FLOPS. Current production runs can op-
erate at N, = 10! (100 GFLOPS). Invoking once
more Moore’s Law, we can foresee LES runs in 15
years. If we perform a sensitivity analysis, we note
that the only linear component in these numbers was
the human patience (e.g. 1hr to 1 day). As soon as we
increase grid resolution by a factor of 10, we increase
the number of points by 103, the number of timesteps
by 10, and the total effort by 10%, i.e. we have to wait
yet another 20 years before we can carry out such
a simulation. Faced with the pressing and immedi-
ate need to compute flows where Reynolds-number
effects are important, we see that the optimal RANS
gridding of geometrically complex domains is still an
important topic of research.

2. THE RANS GRIDDING TECHNIQUE

The generation of isotropic unstructured grids has
reached a fairly mature state, as evidenced by the
many publications that have appeared over the last
decade on this subject (Baker, 1987; Lohner and
Parikh, 1988; Peraire et al., 1988; George et al.,
1990; Joe, 1991; George, 1991; George and Herme-
line, 1992; Lohner et al., 1992; Weatherill, 1992;
Mavriplis, 1993; Jin and Tanner, 1993; Weatherill
and Hassan, 1994; Marcum and Weatherill, 1995;
Shostko and Lohner, 1995, Lohner, 1996) and the
widespread use of unstructured grids in industry. The
two most widely used techniques are the advancing
front technique (Lohner and Parikh, 1988; Peraire et
al., 1988; Lohner et al., 1992; Jin and Tanner, 1993;
* Shostko and Lohner, 1995, Lohner, 1996) and the De-
launay triangulation (Baker, 1987; Joe, 1991; George,
1991; George and Hermeline, 1992; Weatherill, 1992;
Weatherill and Hassan, 1994; Marcum and Weather-
ill, 1995). Hybrid schemes, that combine an advanc-
ing front point placement with the Delaunay recon-
nection have also been used successfully (Merriam,
1991; Mavriplis, 1993; Miiller, 1993). These isotropic
mesh generation techniques have been used to gen-
erate grids with mildly stretched elements within the
context of adaptive remeshing (Peraire, 1987; Lohner,
1988; Tilch, 1991; Habashi, 1998). However, they
fail when attempting to generate highly stretched
_elements, a key requirement for Reynolds-Averaged
Navier Stokes (RANS) calculations with turbulence
models that reach into the sublayer.

A number of specialized schemes have been pro-
posed to remedy this situation (Nakahashi, 1987;
- Kallinderis, 1992; Léhner, 1993; Pirzadeh, 1994;
Marcum, 1995; Pirzadeh, 1996; Peraire and Mor-
gan, 1996). The domain to be gridded was di-
vided into isotropic and stretched element regions.
In addition, a blending procedure to transition
smoothly between these zones was provided. Typi-
cally, the stretched mesh region was generated first

ATAA-99-0662

(Kallinderis, 1992; Lohner, 1993; Pirzadeh, 1994;
Marcum, 1995; Pirzadeh, 1996). Although we have
used such a scheme (Lohner, 1993) for a number of
years, we have found several situations in which the
requirement of a semi-structured element or point
placement close to wetted surfaces is impossible,
prompting us to search for a more general technique.
This procedure may be summarized as follows:

- Generate an isotropic mesh; this can be done
with any unstructured grid generator;

- Remove all points in regions where stretched el-
ements are to be generated;

- Using a constrained Delaunay technique, intro-
duce points in order to generate highly stretched
elements;

- Introduce the points in ascending levels of
stretching, i.e. from the domain interior to the
boundary.

This procedure has the following advantages:

- No surface recovery is required for the Delaunay
reconnection, eliminating the most problematic
part of this technique;

- Proper meshing of concave ridges/corners is ob-
tained;

- The meshing of concave ridges/corners requires
Bo extra work; this important advantage is shown
in Figure 1;

- Meshing problems due to surface curvature are
minimized;

- In principle, no CAD representation of the sur-
face is required; and

- A final mesh is guaranteed, an essential require-
ment for automation.

The disadvantages are the following:

- As with any Delaunay technique, the mesh qual-

ity is extremely sensitive to point placement.

Lavel t Lavel 2
® Suven Boundary Point
© S Boundery Pomt _—
® Savwm Wbarior Roint
O Sew Intestor Polnt

Lovet 3 Lavel 4

e,
z

Figure 1 Introduction of Points at Corners

3. INSERTION OF POINTS

The insertion of points is carried out using the con-
strained Delaunay procedure (George, 1991), which
may be summarized as follows. Given a new point i
at location x;:

- Find the element(s) x; falls into;

- Obtain all elements whose circumsphere encom-
passes x;;

- Remove from this list of elements all those that
would not form a proper element (volume, an-
gles) with x;; this results in a properly con-
strained convex hull;

- Reconnect the outer faces of the convex hull with
x; to form new elements.

The procedure has been sketched in Figure 2.

Figure 2 Introduction of Field Points

For boundary points some additional steps are re-
quired. Given a new point boundary point i at lo-
cation x;:

- Determine if the point is on a boundary edge or
face;

- Reconnect these elements without regard to the
Delaunay criterion;

- Find the element(s) x; falls into;

- Obtain all elements whose circumsphere encom-
passes x;;

- Remove from this list of elements all those that
would not form a proper element (volume, an-
gles) with x;; this results in a properly con-
strained convex hull;

- Reconnect the boundary faces (see Figure 3);

- Reconnect the outer faces of the convex hull with
x; to form new elements.

The reconnection of boundary faces is carried out by
diagonal swapping. For curved surfaces, it is neces-
sary to apply angle constrains in order not to lose sur-
face resolution/definition or surface patch integrity.

u) Original Surface Trianguiation b) Insert Point As Is ¢) Reconnect Boundary Faces

Figure 3 Introduction of Surface Points

The points are inserted according to layers following
the normals emanating from ‘wetted’ surface points,
starting from the outermost layer, and moving to-
wards the boundaries or wake centerlines. Points are
only introduced if the spacing normal to the wall is
below a fraction of the isotropic element size speci-
fied by the user at the particular location. This is

ATAA-99-0662

important for grids with a large variation of element
size, and produces a smooth transition from the Euler
region into the RANS region.

4. ADDITION OF EXTRA SURFACE POINTS

For complex geometries with narrow surface strips
close to concave edges, it is not possible to obtain
a good surface mesh unless one introduces further
points in these regions. A typical situation is shown
in Figure 4.

Figure 4 Addition of Points Along a Ridge

These additional points are introduced by identify-
ing the corners where potential problems can appear.
These are typically concave, and are characterized by
normals that would introduce points close to another
edge. Subsequent reconnection using the constrained
Delauney technique would yield elements with very
large angles. In order to avoid this, additional points
are introduced along the concave edge to mitigate this
topological effect.

5. CONSTRUCTION OF NORMALS

The insertion of points to construct highly stretched
elements is carried out along normals that may start
either on the boundary (boundary layers) or in the
field (wakes). The number of normals emanating from
a surface point can vary, depending on whether we
have a convex or concave surface. Figure 5 shows
just a few of a large class of cases that have to be
considered. ’

Lo R

Figure 5 Some Possible Cases for Surface Normals

6. REMOVAL OF POINTS BEFORE RANS GRIDDING

Since the quality of grids generated using the Delau-
nay technique is very sensitive to point placement, it
is advisable to remove any (isotropic) points that may
interfere with the semi-structured points in the highly
stretched regions. The regions where this could hap-
pen can be obtained before starting the RANS mesh-
ing. The point removal algorithm may be summarized
as follows:

- For each point marked for removal:

- Obtain all edges touching this point, and the
corresponding neighbouring points;

- Remove the edges that can not be collapsed
due to topological considerations (end-, line-
, surface- or volume points);

- Remove the edges that, if collapsed, would
lead to small or negative elements;

- Remove the edges that, if collapsed, would
lead to very small or very large angles;

- Order the remaining edges according to their
length;

- Remove the marked edges, renumbering the
elements;

- Compress and renumber the element and point
lists.

The effectiveness of this point removal algorithm may
be enhanced by combining it with edge and face swap-
ping and point movement. The final point removal
algorithm then takes the form of the following loop:

- DO: For a maximum number of passes:

- Remove marked points by edge-collapse;

- IF: Points could be removed:
- Perform edge and face swdpping;

- ELSE
- Move points that could not be removed;
- Perform edge and face swapping;

- ENDIF

- ENDDO

The advantage of moving points can be seen from the
small example shown in Figure 6. Any edge collapse
for the point in the center of the domain would lead
to elements with vanishing volumes. Mesh movement
in combination with diagonal swapping removes this
quandary. This combination of point movement and
edge swapping is very efficient, typically leaving only
0.1% of the points marked for removal in the mesh.

ATAA-99-0662

a) | b)
—

c) d)
— —

Figure 6 Movement and Removal of Points

7. POINT INTRODUCTION FOR GAPS

In narrow gaps, the introduction of points from two
close surfaces covered with RANS grids can lead to
very poor mesh quality. Figure 7 shows an example
where the resulting mesh is clearly inappropriate for
RANS calculations. In order to avoid the introduc-
tion of points in such regions, the host element into
which the new point falls is checked for proximity to
another surface. If any of the points of this element
are on the surface and are too close to the new point,
the new point is rejected. We remark that the De-
launey reconnection procedure requires the determi-
nation of the host element, so that this check incurs
only a modest amount of CPU. .

Figure 7 Gridding of Gaps

z

8. EXAMPLES

The described RANS gridding procedure has been op-
erational for approximately a year, and was used to
mesh a series of test cases. Four of these are included
here.

a) Nose-Cone: The surface mesh of the isotropic mesh
is shown in Figure 8.1. The removal of points within
the future non-isotropic layers of elements results in
the surface mesh shown in Figure 8.2. The final sur-
face mesh is depicted in Figure 8.3. One can see the
considerable stretching achieved.

b) Ship: This case shows a RANS grid for the generic
chemical tanker shown in Figure 9.1. Figures 9.2 and
10.1-10.3 show surface grids and cross-sections for the
generated mesh. The isotropic (Euler) mesh for this
case had approximately 1.2 million elements, while
the final, anisotropic (RANS) mesh had close to 5 mil-
lion elements.

¢) Flyer: The third configuration considered is that of
a generic hypersonic flyer. Figures 11.1-11.2 show the
surface grids obtained, and Figures 12.1-12.2 show a
plane cut in the region of the vertical tail and sta-
bilizer. Observe the proper gridding in the corner
regions. The isotropic (Euler) mesh for this case
had approximately 2 million elements, while the final,
anisotropic (RANS) mesh had approximately 6 mil-
lion elements. On an SGI Origin 2000, using 1 R10000
processor, the isotropic grid generation took approxi-
mately 45 minutes, while the anisotropic enrichment
took approximately 40 minutes. One can see from
these figures that the speed of the proposed RANS
gridding technique is acceptable.

d) Racecar: The fourth configuration considered is
that of a generic racecar. Figures 13.1-13.2 show
the surface definition and the overall surface grid,
while Figures 14-15 focus on particular regions of the
mesh (driver, nose of the car, back of the car, gaps,
etc.), which had approximately 8.3 million elements.
A result for a flow simulation using Luo’s implicit
LU-SGS-GMRES solver (Luo 1998) is shown in Fig-
ures 16.1-16.2, demonstrating the usefulness of the
procedure.

9. CONCLUSIONS AND OUTLOOK

A procedure for the generation of highly stretched
grids suitable for Reynolds-Averaged Navier-Stokes
(RANS) calculations has been developed. In a first
stage, an isotropic (Euler) mesh is generated. In a
second stage, this grid is successively enriched with
points in order to achieve highly stretched elements.
The element reconnection is carried out using a con-
strained Delaunay approach. Points are introduced
from the regions of lowest stretching towards the re-
gions of highest stretching. The procedure has the
advantages of not requiring any type of surface re-
‘covery, not requiring extra passes or work to mesh
concave ridges/corners, and guarantees a final mesh,
an essential requirement for industrial environments.
Given that point placement and element quality are
highly dependent for the Delaunay procedure, special
procedures are required in order to obtain optimal
point placement. Among these, the most important
is the removal of points that fall into the RANS zone
before enriching the mesh.

Several examples demonstrate the usefulness of the
proposed anisotropic gridding technique. Timings

ATAA-99-0662

from grids generated to date show that the procedure
is faster than traditional advancing front techniques
for isotropic grids, implying that the generation of
anisotropic grids does not place an extra burden on
CPU or memory requirements.

Near-future work will center on:
- Improvements in point placement and element
control;
- Automatic wake placement and topological con-
nection to CAD models; and
- Parallelization.

Looking further into the future, we envision fully au-
tomatic RANS gridders integrated into a multidis-
ciplinary, database-linked framework that is accessi-
ble anywhere on demand, simulations with unprece-
dented detail and realism carried out in fast succes-
sion, and first-principles driven virtual reality.

10. ACKNOWLEDGEMENTS

The author gratefully acknowledges the many in-
sightful discussions with Prof. P.L. George (INRIA,
France), which were instrumental in achieving a fast
and robust Delaunay triangulation tool. The data for
the generic racecar was provided by Prof. J. Katz
(SDSU), and the actual flow solution was obtained
by Dr. H. Luo (SAIC).

This work was partially supported by AFOSR, with
Dr. Leonidas Sakell as the technical monitor.

11. REFERENCES

Baker, T.J. - Three-Dimensional Mesh Generation
by Triangulation of Arbitrary Point Sets; AIAA-
CP-87-1124, 8th CFD Conf., Hawaii (1987).

George, P.L., F. Hecht and E. Saltel - Fully Automatic
Mesh Generation for 3D Domains of any Shape;
Impact of Computing in Science and Engineering
2, 3, 187-218 (1990).

George, P.L. - Automatic Mesh Generation; J. Wiley
& Sons (1991).

George, P.L., F. Hecht and E. Saltel - Auto-
matic Mesh Generator With Specified Bound-
ary; Comp. Meth. Appl. Mech. Eng. 92, 269-288
(1991).

George P.L., and F. Hermeline - Delaunay’s Mesh of a
Convex Polyhedron in Dimension D. Application
to Arbitrary Polyhedra; Int. J. Num. Meth. Eng.
33, 975-995 (1992).

Habashi, W.G., M Fortin, J. Dompierre, M.-G. Vallet
and Y. Bourgault - Anisotropic Mesh Adapta-
tion: A Step Towards A Mesh-Independent and
i User-Independent CFD; pp. 99-117 in Barriers
and Challenges in CFD (Venkatakrishnan et al.
eds.), Kluwer (1998).

Jin, H. and R.I. Tanner - Generation of Unstructured
Tetrahedral Meshes by the Advancing Front
Technique; Int. J. Num. Meth. Eng. 36, 1805-
1823 (1993).

Joe, B. - Construction of Three-Dimensional Delau-
nay Triangulations Using Local Transformations;
Computer Aided Geometric Design 8, 123-142
(1991). :

Joe, B. - Delaunay Versus Max-Min Solid Angle Tri-
angulations for Three-Dimensional Mesh Gen-
eration; Int. J. Num. Meth. Eng. 31, 987-997
(1991).

Kallinderis, Y. and S. Ward - Prismatic Grid Gen-
eration with an Efficient Algebraic Method for
Aircraft Configurations; AIAA-92-2721 (1992).

Lohner, R. and P. Parikh - Three-Dimensional Grid
Generation by the Advancing Front Method; Int.
J. Num. Meth. Fluids 8, 1135-1149 (1988).

Lohner, R. - An Adaptive Finite Element Solver for
Transient Problems with Moving Bodies; Comp.
Struct. 30, 303-317 (1988).

Lohner, R., J. Camberos and M. Merriam - Paral-
lel Unstructured Grid Generation; Comp. Meth.
Appl. Mech. Eng. 95, 343-357 (1992).

Lohner, R. - Matching Semi-Structured and Un-
structured Grids for Navier-Stokes Calculations;
AIAA-93-3348-CP (1993).

Lohner, R. - Progress in Grid Generation via the Ad-
vancing Front Technique; Engineering with Com-
puters 12, 186-210 (1996).

Luo, H., J.D. Baum and R. Lohner - A Fast, Matrix-
Free Implicit Method for Compressible Flows on
Unstructured Grids; J. Comp. Phys. 146, 664-690
(1998).

Marcum, D.L. and N.P. Weatherill - Unstructured
Grid Generation Using Iterative Point Insertion
and Local Reconnection; ATAA J. 33, 9, 1619-
1625 (1995).

"Marcum, D.L. - Generation of Unstructured Grids
for Viscous Flow Applications; AIAA-95-0212
(1995).

Mavriplis, D.J. - An Advancing Front Delaunay Tri-
’ angulation Algorithm Designed for Robustness;
ATAA-93-0671 (1993).

AIAA-99-0662

Merriam, M. - An Efficient Advancing Front Al-
gorithm for Delaunay Triangulation; AIAA-91-
0792 (1991).

Miiller, J., P.L. Roe and H. Deconinck - A Frontal
Approach for Internal Node Generation in De-
launay Triangulations; Int. J. Num. Meth. Eng.
17, 2, 241-256 (1993).

Nakahashi, K. - FDM-FEM Zonal Approach for Vis-
cous Flow Computations over Multiple Bodies;
ATAA-87-0604 (1987).

Peraire, P. M. Vahdati, K. Morgan and O.C.
Zienkiewicz - Adaptive Remeshing for Compress-

ible Flow Computations; J. Comp. Phys. 72,
449-466 (1987).

Peraire, J., J. Peiro, L. Formaggia, K. Morgan and
0O.C. Zienkiewicz - Finite Element Euler Calcu-
lations in Three Dimensions; Int. J. Num. Meth.
Eng. 26, 2135-2159 (1988).

Peraire, J. and K. Morgan - Unstructured Mesh
Generation Including Directional Refinement for
Aerodynamic Flow Simulation; Proc. 5th Int.
Conf. Num. Grid Generation in CFD and Re-
lated Fields, Mississippi, April (1996).

Peraire, J. and K. Morgan - Unstructured Mesh
Generation Including Directional Refinement for
Aerodynamic Flow Simulation; AIAA-98-3010
(1998).

Pirzadeh, S. - Viscous Unstructured Three- Dimen-
sional Grids by the Advancing- Layers Method;
AIAA-94-0417 (1994).

Pirzadeh, S. - Progress Towards a User-Oriented Un-
structured Viscous Grid Generator; AIAA-96-
0031 (1996).

Shostko, A. and R. Lohner - Three-Dimensional Par-
allel Unstructured Grid Generation; Int. J. Num.
Meth. Eng. 38, 905-925 (1995).

Tilch, R. - PhD Thesis, CERFACS, Toulouse, France
(1991).

Weatherill, N.P. - Delaunay Triangulation in Compu-
tational Fluid Dynamics; Comp. Math. Appl. 24,
5/6, 129-150 (1992).

Weatherill, N.P. and O. Hassan - Efficient Three-
Dimensional Delaunay Triangulation with Au-
tomatic Point Creation and Imposed Boundary
Constraints; Int. J. Num. Meth. Eng. 37, 2005-
2039 (1994).

ATAA-99-0662

LTS N
S R i
S = mv N" Mm > 400004»0404?0»
TR SASK] =7 ¥ SRS
> =% mhﬂ"“ ! KRR
> aw,
B> . RS
5 ey e
W
RSN !
~ PR <L >
N RS "‘
g RIS
s KL
TS A Q
— SR AR YAN =t
S e I
B mmeﬁYAA w0
= A = o g
Z 2 2 EERIII S = 5
: o Yl %
S5 ; = 2o R g
S ; 8 RS & , ~
[T S ~ BRI C) SRR
LATIAD s 2ReN)l = AR B
: e = 3
g e AT -
= e RVANG) AN g
e SERD NIV A A s
g =0 Y PSRV L A = |
g SRSl 2 ARVAIIIEAK] S |
g = 4 K] g
o RIS AN S K/ Q
: = = W"ﬂmmmw an mm. vy [
= o S | -~ o»'m =
Q =] wﬁ M -
= SN o
Gt < wv: n..\bu
A7 .m Ay -
@ & HE]
8 g e
! = 2 0K ©
S S A X 3
LAY) T i) %3 &
S SHZTX 4 o [
L TASS =) § 0o >
- = DO 0
= ~ ey S RV, =
? 8 8
. R 5 &
o
o m e
] N
3 m o duo
S) =
£ n £ [
5= © .20
© [
=
0
A e
S N

%

RN

iy
i

ATAA-99-0662

i

N A
SSSES
SIS

\X
4

LA
S
s ’ﬂl

Se
ATA VAN

Figure 13 Generic Racecar: Surface Definition and Surface Mesh

S R
SIS SY
SIS, ‘ v

ATAA-99-0662

\Z
W

N
PAVAVANY.

B0
A vAS S ATAY !
XYY
VAV
A%

o

D0
TavaTaTs
v,

VAVAV,LY,
-

DORR

‘ AVAvg, - T

N
/]

|

e TS m YAy Y
SRS >
SRS Al IAVa T
ORI St VLATAY; YAV
S T AT ATt AT T AT = : v
AR AT IS OIS RN
S RO RS2SRRSR SIS OENIS
ISR R e I
OO OSSO SR XM M
RN SOOI
PATARA S AV STANS)
2208
AV, YAy e VAV, STAY,
APOSCOROSINS
SN A ey ATA YA YAV AT ST TATI P ATS
Al 2 X 4% STAVae A TS

5
PIASER % Sresy
SIS AT, 22ES
2R QOROS NSO
B QEROSS TEASIESES
SRR STAVAT AV S

X3

i y
KR

HAE
A

\VATAVATAYY P
veAVAVAYA'Aé
"
A¥S

N
AV

SIS

A AN

>
NS

N

X

7.

N

a7
>
4

7>

s
IVAYA!
mvi.uﬂﬂﬁ%
AT ALTAVAVAY
OQARK]

;’;,’h
v
ki)
@ ‘A'l’
7/,

VXL
)

v .

1

v,

A

h 'A'f'
A
X

%

)

i

4,

Figure 16 Pressure Contours and Streamlines

APPENDIX 4: FLUID-STRUCTURE-THERMAL INTERACTION

19

o—— —_—
a——————— S—— e———— e,
A———— ST ——— ——— —

AlAA-98-2419

Fluid-Structure-Thermal 'Interaction Using
A Loose Coupling Algorithm
And Adaptive Unstructured Grids

Rainald L'dhner1,20hi Yang’, Juan Cebral’,
Joseph D. Baum®, Hong Luo",
Daniele Pelessone® and Charles Charman®

;George Mason University, Fairfax, VA
3SAIC, McLean, VA

General Atomics, San Diego, CA

29th AIAA Fluid Dynamics Conference
June 15-18, 1998 / Albuquerque, NM

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

ATAA-98-2419

FLUID-STRUCTURE-THERMAL INTERACTION USING
A LOOSE COUPLING ALGORITHM
AND ADAPTIVE UNSTRUCTURED GRIDS

Rainald Léhner!, Chi Yang!, Juan Cebral!,
Joseph D. Baum?, Hong Luo?,
Daniele Pelessone® and Charles Charman3

1GMU/CSI, George Mason University, Fairfax, VA 22030, USA
2Science Applications International Corporation
1710 Goodridge Drive, MS 2-3-1, McLean, VA 22102, USA
3General Atomics, San Diego, CA 92121, USA

ABSTRACT

We present a loosely coupled algorithm to combine Computational Fluid Dynamics (CFD), Computational
Structural Dynamics (CSD) and Computational Thermo-Dynamics (CTD) codes in order to solve, in a cost-
effective manner, fluid-structure-thermal interaction problems. The basic fluid-, structural- and thermo-
dynamics codes are altered as little as possible. The structure is used as the ‘master-surface’ to define the
extent of the fluid region, and the fluid is used as the ‘master-surface’ to define the mechanical and thermal
loads. The transfer of loads, heat fluxes, displacements, velocities and temperatures is carried out via fast
interpolation and projection algorithms. As shown, this fluid-structure-thermal algorithm can be interpreted
as an iterative solution to the fully-coupled, large matrix problem that results from the discretization of the
complete problem. Results from steady supersonic flow and shock-structure interaction problems indicate
that the proposed approach offers a convenient and cost-effective way of coupling CFD, CSD and CTD codes

without a complete re-write of them.

1. INTRODUCTION

The advent of supercomputing over the last decade
has led to fairly mature codes in all core disciplines
of Computational Physics. Due to their immediate
importance to industry, a large number of public-
domain and commercial codes exists for the simula-
tion of Computational Fluid Dynamics (CFD), Com-
putational Structural Dynamics (CSD) and Compu-
tational Thermo-Dynamics (CTD) [Cod98]. There
exist large classes of important engineering problems
that require the concurrent application of CFD, CSD
and CTD techniques. Some examples are:

- Explosive inflation, e.g. for airbags, where flow-
field, fabric loading and fabric temperature are
closely linked;

- Hypersonic Flight, where the deformation of
the structure due to aerodynamic and aerother-
mal loads is such that a significant variation of
the flowfield takes place (shock location, surface
heating, etc.), and

- Process modeling, where the heat due to shear
and chemical reactions in the fluid gives rise to
non-uniform temperature distributions in the

Copyright (©1998 by the authors. Published by the
AIAA with permission.

solid, resulting in thermal stress loads and the
associated fatigue.

- Variable Geometry Vehicles, where the change
of geometry implies a transient phase in which
structures and flowfields are interacting strongly,
and, in most cases, non-linearly.

Most of these problems are presently solved either
iteratively, i.e. making several cycles of ‘CFD run
followed by CTD run followed by CSD run’, or by
assuming that the CFD, CSD and CTD problems
can be decoupled ‘to first order’. Throughout most
large manufacturing companies the respective CFD,
CSD and CTD runs are performed in different divi-
sions which may be geographically dispersed, leading
to time-delays, loss of information, and, most impor-
tantly, loss of insight.

The need to solve fluid-structure-thermal interaction
problems has prompted a number of developments in
this field in recent years. The best way to sort these
efforts is by classifying them according to the physical
and numerical complexity employed for the fluid and
structure respectively (sée Figure 1). For the fluid,
the PDEs solved are, in increasing order of physical
complexity:

F1. Laplace/Helmholtz Operators (inviscid, irrota-

tional, isentropic flow),

F2. Non-Linear Laplace Operators (inviscid, irrota-
tional flow),
F3. Euler Equations (inviscid flow),
F4. Reynolds-Averaged Navier-Stokes Equations
(viscous, time-averaged flow),
F5. Large-Eddy Simulations (viscous flow with
spatio-temporal cut-off), and
F6. Navier-Stokes Equations.
Each of these approximations requires between one
and two orders of magnitude more CPU-time and
memory than the preceding one. For the linear
case, boundary element methods may be employed,
whereas all other approximations are typically ap-
proximated on a grid with spatial discretizations ob-
tained from Finite Difference, Finite Volume, Finite
Element, or Spectral Element techniques.
For the structure, the PDEs solved are, in increasing
order of physical complexity:
S1. 6 Degrees of Freedom Integration (rigid body),
S2. Linear Elastic Models, either through
a) A Modal Decomposition, or
b) A Finite Element Discretization,
S3. Elasto-Plastic Models, and
S4. Elasto-Plastic Models with Contact, Rupture,
etc.
As before, each of these approximations requires be-
tween one and two orders of magnitude more CPU-
time and memory than the preceding one. For struc-
tures, the spatial discretization is typically carried out
using Finite Element techniques [Zie88].
For the thermodynamic description of the problem,
the PDEs solved are, in increasing order of physical
complexity:
T1. Adiabatic or Isothermal Walls and Sources/
Sinks,
T2. Linear Heat Conduction, either through
a) A Network Decomposition [Gas87] or
b) A Finite Element Discretization [Zie88,
Pro92, L6h94], and
T3. Nonlinear Heat Conduction [L6h94].
As before, each of these approximations requires be-
tween one and two orders of magnitude more CPU-
time and memory than the preceding one. When solv-
ing the PDE’s describing the heat flux, the spatial dis-
cretization is usually carried out using Finite Element
techniques [Zie88].
A major characteristic of fluid-structure-thermal al-
gorithms is the requirement to combine the discretiza-
tions for the fluid and the structure. This provides a
fourth classification item (see Figure 2):
I1. Same surface/volume discretization;
12. Different surface/volume discretization coupled
via:
a) Interpolation,
b) Least-Squares,
¢) Lagrange Multipliers, or

AIAA-98-2419

d) A Third, so-called ‘Virtual’ Surface Grid.

For the simple CSD approximations $1,52a, there is
no discretization of the structure per se, so that the
transfer of information between fluid and structure is
straightforward.

With this series of possibilities, we are now in a po-
sition to classify previous fluid-structure-thermal in-
teraction work. The three classic fields that com-
bine two of these disciplines: structural acoustics
and aeroelasticity for fluid-structure interaction and
thermal stress analysis for structures have seen the
largest amount of activity, particularly in those in-
stances where the fluid, structure and heat transfer
were assumed as linear (inviscid, irrotational, isen-
tropic fluid, linear elastic structure, linear heat con-
duction). Of the many references in aeroelastics, we
mention [Jac87, Bat88, Gur90, Eve90, Eve91, Bos93,
Rau93, Fel93, Gur93, Alo95]. For thermoelastics, see
[Tho88, Tam97]. To our knowledge, the earliest ef-
fort to simulate fully coupled fluid/ structure/ ther-
mal problem is the work of Thornton [Tho88], which
was carried out in 2-D.

The present effort is directed towards nonlinear appli-
cations, in particular structures that undergo defor-
mations due to aerodynamic or aero-thermodynamic
loads. For this reason, we start immediately with the
Euler and Reynolds-Averaged Navier-Stokes equa-
tions for the fluid, and either the linear elastic
(for aerospace flight vehicles) or nonlinear, large-
deformation equations (for impact simulations) for
the structure. Given that the geometrical complex-
ity of the problems targeted for simulation can be
severe and the deformation considerable, automatic
grid generation is a prime requirement. For this rea-
son, unstructured grids are employed for the fluid and
the structures. The elements used for the fluid are
tetrahedral, whereas the elements for the structure
are typically trusses, beams, quads or bricks.

The remainder of the paper is organized as follows:
Section 2 describes the coupling strategy used. The
individual codes chosen, FEFLO98 for the fluid,
COSMIC-NASTRAN , DYNA3D for the solid
region, and COSMIC-NASTRAN for the heat
transfer in solids, are briefly described in Section 3.
Sections 4-6 discuss surface to surface interpolation,
surface tracking and load transfer techniques. In Sec-
tion 7, some demonstration runs are shown. Finally,
conclusions and an outlook for future development are
given in Section 8.

2. COUPLING ALGORITHM

When trying to compare the possible coupling algo-
rithms, it is useful to start from the basic discrete
equation systems obtained for the thermal, solid and
fluid regions. In the following, we assume, without

loss of generality, that some form of spatial and tem-
poral discretization has been carried out for the in-
dividual sub-disciplines and subdomains. The time-
marching scheme is then cast into a system of equa-
tions for the increments of the unknowns in time, i.e.
in so-called A-form. For the thermal field in the
solid region, we obtain a system of equations of the
form:

LHST-AT = (§C+9K) AT =1 +£ , (1)

where

At, C, T, K, f denote, respectively, the timestep, the
heat capacitance matrix, nodal temperature vector,
heat conduction matrix and the (internal and exter-
nal) thermal loads vector, and we have lumped the
left-hand-side matrix into the expression LHST. By
splitting the degrees of freedom into those touching
the fluid region (‘f’), and the remaining ones (‘¢’), we
obtain

LHSTff LHST/: <AT;) _
LHST;; LHST,, AT,) =

£\ . (£\°, (L-(as +0Aqy)

@)+ (@) + (@39 o
where the superscripts 7,e denote internal (conduc-
tion) and external thermal loads respectively, L is
the load matrix and q; the vector of heat loads on

the surface due to the fluid. For the solid region,
we obtain a system of equations of the form:

LHSS - AX = (aM, + 8D + 1K) AX =

£, +£{ + OAf? + Q(T + OAT) (3)

where M,,f! f:, D, K, X, X, Q, T denote, respec-
tively, the mass-matrix, interal (stiffness, damping,
inertia) and external force vector, damping matrix,
stiffness matrix, displacement vector, velocity vec-
tor, thermal stress matrix and nodal temperatures,
@, B,7,0© depend on the timestep and the timestep-
ping scheme chosen, and we have lumped the left-
hand-side matrix into the expression LHSS. By split-
ting the degrees of freedom into those touching the
fluid region (‘f’), and the remaining ones (‘s’), we
obtain

LHSS_ff LHSS;, (A}.(f) _
LHSS,; LHSS,, [\AX,)~

ATAA-98-2419

6\, (£\°, (L-(s;+©Ass)
(8) +(2) (M 5o%)+
Q;(T + ©AT) @)
Q,(T+06AT)/
where the superscripts 7, e denote internal (stiffness,
damping, inertia) and external forces respectively, L
is the load matrix and s; the fluid stresses (pressures,

shear stresses) on the surface. For the fluid region,
we obtain a system of equations of the form:

LHSF-AU = (Zl"th +efJ) AU =f+£° | (5)

where M, J, f, U denote, respectively, the mass ma-
trix, Jacobian of the discretized fluxes, internal and
external forces, and we have lumped the left-hand-
side matrix into the expression LHSF. By splitting
the degrees of freedom into those touching the solid
region (‘s”), and the remaining ones (‘f’), we obtain

LHSF,, LHSF,; (AU,) _
LHSF,, LHSF; AUy)~

£\, (£)°

(&) +(5) ®
where the superscripts 7,e denote the internal (vis-
cous, advective, inertia) and external force vectors re-
spectively. Before proceeding to the complete coupled
equation system, we have to define the continuity of
the variables across boundaries or domains. The tem-
peratures required by the structure for thermal stress

calculation are obtained from the C'TD solver via in-
terpolation:.

Ts == IstTt y (7)
where I,; is a 3-D interpolation matrix, which reverts
back to the identity matrix in case that the nodes
of the grids for structural and thermal analysis are
coincident. In the same way, the temperatures at the

‘wetted surfaces’ of the CFD and CTD domains have
to be the same:

Ty =1;T: . (8)
Here Ij; is now a surface to surface interpolation op-
erator. The velocities at the surface of the structure
and fluid domain are required to be the same, hence:

vilr, = Liyv, = 11, X, . (9)
Finally, the thermal and mechanical loads the fluid
exerts on the structure have to be transferred:
qr = thUf +GtsUa y Sf = Gstf + G,, U, ’
(10)

where we have used G to indicate the gradient- or
derivative-based operators involved.

The final coupled system then takes the form:

ATAA-98-2419

(LHST,;, LHST,, 0 0-6LG(, ~OLGy) , .m
LHST,; LHST, 0 0 -0Gy, ~0Gy | [‘AT
-0QyI;; —-0Q,I;, LHSS,; LHSS,, 0 0 AXy |
-0Q,I; —-0Q,I;, LHSS,, LHSS,, 0 0 f AX, | T

0 0 0 0 LHSF,, LHSF,, 28’
{ 0 0 0 0 LHSF;, LHSF,, | d
(3
P 0 000LGy, LGy, 3
£ ¢ 0 000 0 o0 T,
I QI 00 G, G,
AR + Qslye QsIy At X ' (11)
f, f, QI; QI 00 0 0 X,
? *;f 0 o000 o of |U
’ ’ 0 000 o o) ‘U

Given this complete system, we can now define pos-
sible coupling algorithms.

a) Tight coupling: We denote by tight coupling the
simultaneous update of all variables, including (and
most notably) those at the fluid/structure/thermal
interface. This implies solving the complete system
given by Eqn.(11) in one step. The formulation al-
lows for different grids in the CFD, CSD and CTD do-
mains, but the reader should realize that the deriva-
tion of the proper projection and interpolation ma-
trices can be tedious in 3-D. From a numerical point
of view, choosing this approach leads, for most cases,
to an increase in the condition number for the ma-
trices to be solved, with the associated solution dif-
ficulties. From a practical point of view, choosing
this approach requires an almost complete re-write of
the CFD, CSD and CTD codes into one single cou-
pled code. This implies a loss of modularity (different
numerical schemes, different codes), as well as the in-
ability to couple several CFD, CSD and CTD codes.
Moreover, the ‘trade-oriented’ aspect of each of the
individual codes is blurred or lost, with the associ-
ated extra expenses for retraining the user base.

b) Loose coupling: We denote by loose coupling the
separate update of the CFD, CSD and CTD do-
mains, with a transfer of variables at the interface
or the domain. The most common way of realiz-
ing this approach is by selecting a ‘master surface’
for a certain variable, and interpolating or projecting
the variable to the other domain at the beginning of
the next timestep. For CFD/CSD/CTD problems,
the most natural combination is to select the CSD
surface location and velocity as the ‘master-grid’ for
displacements and temperatures, and the CFD grid
as the ‘master-grid’ for the loads (pressures, shear-
stresses, heat fluxes). The product of displacement
times load yields work, making the combination phys-
ically appealing. This approach may be regarded as

an iterative solution of the combined system given by
Eqn.(11). Each iterative pass is composed of the fol-
lowing steps (see Figure 3):

- Solve for CTD with imposed q;

- Solve for CSD with imposed sy, T

- Solve for CFD with imposed T,, X,, X,.

This procedure may be refined to include a transfer
of the left-hand side Jacobians.

Depending on the time integration scheme used for
the CTD, CSD and CFD domains, several simplifying
strategies can be employed. Should explicit time inte-
gration be appropriate to advance the CTD, CSD and
CFD regions (as is the case for some of the problems
considered here), the loose and tight coupling systems
are almost identical, the only error being the mass
of fluid for the first row of elements adjacent to the
solid. Should implicit time integration be best way
to advance the CSD and CFD regions (as is the case
for low-frequency aeroelastic applications), the LHS
of the time-discrete form of Eqn.(11) will contain en-
tries of the Jacobians of f*. In this case, the iterative
strategy discussed above will have to be used for the
loose coupling approach if equivalency with the tight
coupling system is to be achieved. Finally, if only a
steady-state solution for the coupled fluid-structure
system is sought, the loose coupling approach may be
used either with explicit or implicit time integration
for the CTD, CSD and CFD domains without incur-

ring any errors.

The variables on the boundaries are transferred back
and forth between the different codes by a master
code that directs the mulfi—disciplinary run. Two pos-
sible implementations are possible here:
a) Single Executable: Each ‘discipline code’ (CFD,
CSD, CTD, ..) is seen as a subroutine or object
called by the master code

b) Multiple Executables: Each ‘discipline code’
(CFD, CSD, CTD, ..) runs as an independent
process that awaits commands and data from a
master process or other processes. The master
process synchronizes the start and interruption
of the different processes, and in particular the
transfer of information.

In both cases, the transfer of geometrical and physical
information is performed between the different codes
without affecting their layout, basic functionality, and
coding styles. This is seen as the main advantage of
this approach.

A tremendous amount of man-years has been de-
voted to CFD, CSD and CTD codes, incorporating
into them all the minor features that make these
codes efficient, practical, user-friendly tools. The
central assumption made here is that these codes
will not be rewritten, should not be hampered in
their present and future development, and neverthe-
less can be combined efficiently to solve strongly cou-
pled CFD/CSD/CTD problems.

For structures that break, rupture, or deform
markedly due to the loads exerted by the fluid, the
corresponding CFD and/or CSD grid will require
some form of remeshing, which can be either local
or global in nature. If this remeshing can not be done
automatically, the usefulness of such an approach will
always remain limited. Therefore, automatic gridding
techniques are an enabling technology for this class of
problems. The CFD code employed here has, as one of
its salient features, an automatic remeshing capabil-
ity. This capability is very important for the class of
fluid-structure interaction problems considered, and
will be demonstrated in the examples shown below.

3. CODES SELECTED

The selection of the respective CFD/CSD/CTD codes
was made according to the following guidelines:

- The code must be well proven;

- The code must be benchmarked;

- The code must be supported;

- The code must have a user base/community;

The three candidate codes chosen were: FE-
FLO98 for the fluid, COSMIC-NASTRAN for
linear structures DYNA3D for the solid. A brief
overview of the physics being modelled, the numeri-
cal techniques employed, as well as useful engineering,
meshing and software options available in these two
codes is given in the sequel.

3.1 CFD CODE: FEFLO98

a) Physics: FEFLO98 is a simulation code for com-
pressible and incompressible flows. The equations
solved are the Euler, Laminar or Reynolds-averaged

AIAA-98-2419

Navier-Stokes equations, as well as the linear acous-
tics equations. The turbulence models available are
the Smagorinsky, Baldwin-Lomax and k — ¢ models,
as well as a user-input option via subroutine. Equa-
tions of state supported by FEFLO98 include ideal
polytropic gas, real air EOS table look-up, water EOS
table look-up, the JWL EOS for high explosives and a
link to the general SESAME library of EOS. In order
to handle situations with moving bodies and/or mov-
ing grids, the equations are solved in the Arbitrary
Lagrangean-Eulerian frame [Don82].

Flows with particles are treated via a second solid
phase. The particles interact with the fluid, exchang-
ing mass, momentum and energy, and are integrated
in a time-consistent manner with the fluid.

b) Numerics: The spatial discretization is accom-
plished via finite element techniques on unstructured
tetrahedral grids. In order to achieve high execu-
tion speeds, edge-based data structures are used.
Both central and upwind flux (van Leer [vLe74],
Roe [Roe81], AUSM+ [Lio95]) formulations are
used. For the temporal discretization, both Taylor-
Galerkin and Runge-Kutta time integration schemes
are possible. Monotonicity of the solution may be
achieved through a blend of second and fourth order
dissipation [Jam93], pressure-based, Flux-Corrected
Transport (FCT) [Loh87], or classic TVD limitors.
The particles are integrated using a second-order
Runge-Kutta scheme, and optimal tracking tech-
niques [L6h90, Siv94] have been implemented to ex-
pedite the transfer of information between fields and
particles.

¢) Engineering: In order to handle situations with
moving bodies, FEFLO98 offers a variety of options:
prescribed motion, 6-DOF integration based on aero-
dynamic forces, and link to CSD codes.

A variety of boundary conditions can be prescribed
to simulate as faithfully as possible engineering flows:
sub-,tran-, and supersonic in/outflow, total pressure
inflow b.c., static pressure, mach-number and normal
flux outflow b.c., porous walls, and periodicity. At the
same time, a large variety of diagnostics is produced
by the code to track or display specific parts of the
flowfield that are of special interest: 0-D probes (eg.
for station time history), 1-D line segments for x/y
display, 2-D planes or iso-surfaces for contouring, flux
trough surfaces, force and moment data on surfaces
or bodies, on-line display of the flowfield, etc.

d) Meshing Options: FEFLO98 allows for automatic
adaptive h-refinement [L5h92] and automatic remesh-
ing [L6h88,90] in order to enhance the solution accu-
racy, even for situations with moving bodies.

e) Software: FEFLO98 is written in FORTRAN-
77 and fully vectorized. Renumbering tech-
niques [L6h93,97] are used extensively in order to

avoid cache-misses on RISC-based machines and
cache-line contingencies on shared memory parallel
machines. For distributed memory parallel machines
domain splitting [L6h93] and message passing are em-
ployed. The code runs on all major workstations,
vector-supercomputers and parallel platforms.

FEFLO98 is a well-proven and benchmarked code
used extensively by the authors and others in the CFD
community [Bau93,94,95,96,98].

3.2 Linear CSD CODE: COSMIC-NASTRAN

a) Physics: COSMIC-NASTRAN is a simu-
lation code especially suited for solids undergo-
ing elastic deformations. In addition, COSMIC-
NASTRAN may be used to solve any linear second
order elliptic or parabolic PDE, e.g. Laplace, Poisson
and Helmholtz equations, time-dependent liear heat
conductions, etc. The conservation equations for mo-
mentum are written and solved for in the Lagrangian
frame of reference. The small deformation, small
strain formulation is employed throughout. The code
incorporates isotropic or orthotropic elastic material
models, and many variations for composites [Mac81].

b) Numerics: The spatial discretization is accom-
plished via finite element techniques on unstructured
grids. A very large number of different element
types is supported (it is rumored that COSMIC-
NASTRAN is over two million lines long !), among
them truss beam elements, several triangular and
quadrilateral shell elements, and tetrahedral, pris-
matic and hexaheral solid elements. The temporal
discretization is carried out using an implicit differ-
ence method, which is unconditionally stable. The
resulting equation systems for static, dynamic and
eigenvalue analysis are solved directly, using vari-
ants of Gaussian solution techniques. COSMIC-
NASTRAN incorporates elaborate bandwidth min-
imization algorithms to reduce the cost of direct
solvers.

c) Engineering: Given its large history as the de
facto standard code for linear structural mechanics,
COSMIC-NASTRAN incorporates a very large
number of convenient features that have proven useful
for the efficient modeling of engineering problems.

A large variety of diagnostics is produced by the code
to track or display specific parts of the structure that
are of special interest: 0-D probes (e.g. for station
time history), 1-D line segments for x/y display, 2-
D planes or iso-surfaces for contouring, stress, strain,
force and moment data on surfaces or fields, etc.

d) Meshing Options: COSMIC-NASTRAN in its
current state does not allow for automatic adaptive
h-refinement or automatic remeshing.

ATAA-98-2419

e) Software: COSMIC-NASTRAN is written in
FORTRAN-66. The code was written before the ad-
vent of vector or parallel machines CRAY-type ma-
chines. Given that the number of degrees for linear
structures are typically only a fraction of those used
for flow simulations, this is not a major drawback.
COSMIC-NASTRAN has been ported to all ma-
Jor platoforms, from PC’s to parallel platforms.

COSMIC-NASTRAN is a well-proven, bench-
marked code used extensively in industry, government
laboratories and academia.

3.3 Non-Linear CSD CODE: DYNA3D

a) Physics: DYNA3D is a simulation code especially
suited for solids undergoing rapid and severe defor-
mation. The conservation equations for momentum
are written and solved for in the Lagrangian frame of
reference. The large deformation, large strain formu-
lation is employed throughout. The code incorporates
forty-one different material models, among them lin-
ear elastic, linear elastic-plastic, strain-rate sensitive
steel with fracture, hardening material models, a ge-
ological cap model for soil materials, and a variety
of concrete models that simulate fracturing behav-
ior [Whi93]. DYNAS3D also offers eleven equations
of state models, including equations of state for high
explosives.

b) Numerics: The spatial discretization is accom-
plished via finite element techniques on unstructured
grids. The elements available for structural mod-
elling are one truss and two beam elements, sev-
eral quadrilateral shell elements (e.g. Belytschko-
Tsai [Bel84], Hughes-Liu [Hug81], YASE [Whi93],
and QPH [Bel94], and hexaheral elements with one-
point integration for the 3-D solids. The shells al-
low for multiple integration points across the thick-
ness, making it possible to accurately treat nonlin-
ear plastic behavior of simple and composite shells.
Several hourglass control options may be used. We
have found that the Flanagan-Belytschko hourglass
control [Fla81] works best for the unstructured hex-
ahedral grids we most often employ. The temporal
discretization is carried out using an explicit central
difference method, which is conditionally stable.

¢) Engineering: DYNAS3D incorporates a large num-
ber of convenient features that prove especially useful
for realistic engineering problems. The following is a
non-exhaustive list of those features that were par-
ticularly relevant to our class of applications. The
user may prescribe non:reflecting boundary condi-
tions which eliminate stress wave reflections at model
boundaries, making it possible to use smaller mod-
els. There are twelve types of sliding-interface algo-
rithms to treat different interface conditions between
interacting parts. Sliding-interface algorithms permit

the treatment of contact conditions with friction, gap
opening, spotwelds, etc. For civil engineering applica-
tions, there are rebar-concrete interaction algorithms
which include degradation and failure of bond.

A large variety of diagnostics is produced by the code
to track or display specific parts of the structure that
are of special interest: 0-D probes (e.g. for station
time history), 1-D line segments for x/y display, 2-
D planes or iso-surfaces for contouring, stress, strain,
force and moment data on surfaces or fields, etc.

d) Meshing Options: DYNAS3D in its current state
does not allow for automatic adaptive h-refinement or
automatic remeshing. Work is currently in progress
to incorporate these feature into DYNA3D .

e) Software: DYNA3D is written in FORTRAN-
77 and fully vectorized. The code was written with
CRAY-type machines in mind, but runs well on all
major workstations, vector-supercomputers and some
parallel platforms. It employs dynamic memory allo-
cation, making it capable of solving very large prob-
lems.

DYNAS3D is a well-proven and benchmarked code
used extensively by the authors and others in the CSD
community [Gou82, Cha82, Whi93]. DYNA3D was
developed at the Lawrence Livermore National Lab-
oratories by Dr. John Hallquist with contributions
from Dr. David Benson and Dr. Robert Whirley.
DYNA3D has been successfully used for a large
number of applications, including nuclear and con-
ventional weapon design, car and airplane crashwor-
thiness studies, analysis of reinforced structures such
as bunkers, tunnels, and silos, as well as spent nu-
clear shipping cases. It is supported and maintained
by Lawrence Livermore National Laboratories.

4. SURFACE TO SURFACE INTERPOLATION

One of the main aims of the proposed approach is
to couple the different codes in such a way that each
one of the codes used is modified in the least possible
way. Moreover, the option of having different grids
for different disciplines (CFD/CSD/CTD/CEM..), as
well as adaptive grids that vary in time, implies that
in most cases no fixed common variables will exist at
the boundaries. Therefore, fast and accurate interpo-
lation techniques are required. As the grids may be
refined/coarsened during timesteps, and the surface
deformations may be severe, the interpolation proce-
dures have to combine speed with generality. Algo-
rithmic aspects of procedures that fulfill these require-
ments have been discussed in [Knu73, Sed83, L5h95]
(volume) and [L6h95, Mam95, Ceb97] (surface), and
do not need to be repeated here.

AIAA-98-2419

4.1 Unwrapping of Doubly Defined Faces

Consider the common case of thin structural ele-
ments, e.g. roofs, walls, stiffeners, etc. surrounded
by a fluid medium. The structural elements will be
discretized using shell elements. These shell elements
will be affected by loads from both sides. Most CSD
codes require a list of faces on which loads are exerted.
This implies that the shell elements loaded from both
sides will appear twice in this list. In order to be able
to incorporate thickness and interpolate between CSD
and CFD surface grids in a unique way, these doubly
defined faces are identified, and new points are intro-
duced. The first step is to identify the doubly defined
faces. A linked list that stores the faces surrounding
each point is constructed. Each face is then checked
by performing an exhaustive comparison of the points
of each of the faces surrounding the first node of each
face. This will identify doubly defined faces in O(Ny)
complexity ,where N; is the number of faces. Should
this check reveal the existence of doubly defined faces,

new points are introduced using an unwrapping pro-
cedure [Loh95].

5. SURFACE TRACKING TECHNIQUES

An important question that needs to be addressed is
how to make the different grids follow one another
when deforming surfaces are present. Consider the
typical aeroelastic case of a wing deforming under
aerodynamic loads. For accuracy purposes, the CFD
discretization will be fine on the surface, and the sur-
face will be modelled as accurately as possible from
the CAD-CAM data at the start of the simulation.
On the other hand, a2 CSD discretization that models
the wing as a series of plates may be entirely appropri-
ate. If one would force the CFD surface to follow the
CSD surface, the result would be a wing with no thick-
ness, clearly inappropriate for an acceptable CFD re-
sult. On the other hand, for strong shock/object in-
teractions with large plastic deformations and possi-
ble tearing, forcing the CFD surface to follow exactly
the CSD surface is the correct way to proceed. These
two examples indicate that more than one strategy
may have to be used to interpolate and move the sur-
face of the CFD mesh as the structure moves. We
have incorporated the following techniques:

a) Exact tracking with linear interpolation. This is
the most straightforward case, but, as could be seen
from the example described above, may lead to bad
results. -

b) Exact tracking with quadratic interpolation. In
this case, the surface normals are recovered at the
end-points of the surface triangulation. For each
edge of the triangulation, the midpoint is extrapo-
lated using a Hermitian polynomial [L&h95). In this

way, quadratic triangles are obtained. The surface
is then approximated/interpolated using this higher
order surface.

¢) Tracking with initial distance vector. In many in-
stances, e.g. thick shells, the CFD and CSD domains
will never coincide. A way to circumvent this dilemma
1s to compute the difference vector between the initial
CSD and CFD surfaces, and maintain this vector (al-
lowing for translation and rotation) for the duration
of the coupled run. Several options are possible here,
e.g. surface normals, point normals, etc. [Ceb97].

An important area still under investigation is how to
handle, in an efficient and automatic way, models that
exhibit incompatible dimensionalities. An example
for such a ‘reduced model’ would be an aerothermoe-
lastic problem where the wing structure is modeled by
a torsional beam (perfectly acceptable for the lowest
eigenmodes), the fluid by a 3-D volumetric mesh, and
the heat transfer by a network model. It is easy to
see that the proper specification of movement for the
CFD surface based on the 1-D beam, as well as the
load transfer from the fluid to the beam and network
points represent non-trivial problems for a general,
user-friendly computing environment.

6. CFD-CSD/CTD LOAD TRANSFER

During each iteration, the CFD loads have to be
transferred to the CTD/CSD grids. Simple point-
wise interpolation can be employed for those cases in
which the elements of the CTD/CSD surface meshes
are smaller or of similar size than the elements of the
CFD surface mesh. However, this approach is not
conservative, and will not yield accurate results for
the common case of CTD/CSD surface elements be-
ing larger than their CFD counterpart. Considering
without loss of generality the pressure loads only, it
1s desirable to attain:

ps(x) % ps(x) , (12)

while being conservative in the sense of:

f:/p,ndF:/pfndF , (13)

where pg,p, denote the pressures on the fluid and
solid material surfaces, and n is the normal vector.
These requirements may be combined by employing a
weighted residual method. With the approximations:

Ps = N:pis y Pf = N}‘.pjf) (14)

we have

/N;'N,J’drp,-,sz;'N}dI‘pjf) (15)

which may be rewritten as:

s 4

ATAA-98-2419

Mp, =r =Lpy . (16)

Here M is a ‘consistent mass-matrix’, and L a ‘load-
ing matrix’. The solution of this coupled system of
equations is obtained iteratively in the now familiar
way:

M- (pit' -pl)=r-M.p! , (17)

where M; is the ‘lumped mass matrix’. Typically,
three iterations are sufficient to achieve an accurate
result. One can also show that Eqn.(16) is equivalent
to the least-squares minimization of

1= [-pfar, (18)

We remark that the weighted residual method is
conservative in the sense of Eqn.(13). The sum

of all §hape-functions at any given point is unity
(3=; N;(x) = 1), and therefore:

/p,dr = /N,fdrpj, = /ZN;’N;’drpj,
= Z/N;’N,fdrp,-, = Z/N;‘N}'drpj,
i i

= /ZNfN,’;dFij =/N,fd1‘ij =/1>de (19)

The most problematic part of the weighted residual
method is the evaluation of the integrals appearing
on the right-hand side of Eqn.(15). When the CFD
and CSD surface meshes are not nested, this is a
formidable task. The adaptive Gaussian quadrature
procedure proposed in [Ceb97] has proven very suc-
cessful for the evaluation of these integrals.

7. EXAMPLE RUNS

7.1 Generic Weapon Fragmentation: This second
example shows a fully coupled CFD/CSD run.
The structural response was calculated using GA-
DYNA [Pel95, Pel97, Pel98], an enhanced version
of DYNAS3D that incorporates adaptive refinement
and improved contact algorithms. The structural ele-
ments were assumed to fail once the average strain in
an element exceeded 60%. At the beginning, the CFD
domain consisted of two separate regions. These re-
gions connected as soon as fragmentation started. In
order to handle narrow gaps during the break-up pro-
cess, the failed CSD elements were shrunk by a frac-
tion of their size. This alleviated the timestep con-
straints imposed by small elements withoutaffecting
the overall accuracy. The final breakup led to approx-
imately 1200 objects in the flowfield. Figures 4,5 show

the fluid pressure and CSD surface velocity at three
different times during the simulation. Typical meshes
for this simulation were of the order of 8.0 Mtets, and
the simulations required of the order of 50 hours on
the SGI Origin 2000 running on 32 processors.

7.2 Nose-Cone: As a second example, we consider a
generic nose-cone. The cone is 1 m long and its an-
gle is approximately 20°. The freestream conditions
were set as follows: density p = 1.25 kg/m3, velocity
v = 10% m/sec, pressure p = 10° N/m?, free stream
viscosity g = 1.8 - 1075 kg/m/sec, initial tempera-
ture T = 273 K, heat coefficient at constant pressure
¢p = 1000, polytropic coefficient ¥ = 1.4, Prandtl-nr.
of Pr = 0.71 and angle of attack of & = 10°. This
yields a Reynolds-nr. of approximately Re = 7 - 107
based on the length of the cone, and a Mach-nr. of
My = 3.0. The effects of turbulence were simulated
using the Baldwin-Lomax turbulence model. Suther-
land’s law was assumed for the dependence of viscos-
ity and conductivity on temperature. A suitable grid
with highly stretched elements in the boundary layer
was generated using the advancing layers/ advancing
front technique. This CFD grid had approximately
574 Ktet elements. The actual shell thickness of the
cone was assumed be § = 1 mm, with three reinform-
cement plates of § = 2 mm. The material proper-
ties for the shells were as follows: Young’s modulus
E = 2-10° N/m?, Poisson’s ratio v = 0.30, density
p = 7.84-10% kg/m3, and thermal expansion coef-
ficient 8 = 1.25-107%1/K. The structure was dis-
cretized with the triangular shell element CTRIA2.
The same discretization was also used for the calcula-
tion of the temperature field. The cone was assumed
to be clamped at the base; also, at this location, the
temperatures were assumed to be fixed. The solution
was initiated by converging the fluid-thermal prob-
lem, without any structural deformation. This took
approximately 10 iterations. Thereafter, the fluid-
structure-thermal problem was solved in only 2 itera-
tions. Figures 6,7 show grids and the results obtained.

7.3 Deforming Panel: As a second example, we con-
sider supersonic flow over a deforming panel, as pro-
posed by Thornton [Tho88]. A diagram of the initial
conditions is shown in Figure 8. The panel is 0.1016 m
long and 0.00254 m thick. The freestream conditions
were set as follows: density p = 1.25 kg/m?, veloc-
ity v = 1.42 - 10® m/sec, pressure p = 105 N/m?,
free stream viscosity u = 1.8-107% kg/m/sec, initial
temperature T = 273 K, heat coefficient at constant
pressure ¢, = 1000, polytropic coefficient ¥ = 1.4 and
Prandtl-nr. of Pr = 0.71. This yields a freestream
Mach-nr. of My = 4.26. The effects of turbulence
were simulated using the Baldwin-Lomax turbulence
model, and a 1/7th profile was assumed at inflow.
Sutherland’s law was assumed for the dependence of
viscosity and conductivity on temperature. A suit-

ATAA-98-2419

able grid with highly stretched elements in the bound-
ary layer was generated using the advancing layers/
advancing front technique. This CFD grid had ap-
proximately 174 Ktet elements. The material prop-
erties for the panel were as follows: Young’s modulus
E =2.10° N/m?, Poisson’s ratio v = 0.30, density
p = 7.84 . 10° kg/m®, and thermal expansion coef-
ficient # = 1.25-107°1/K. The structure was dis-
cretized with hexahedral volume elements CIHEX]1.
The same discretization was also used for the calcula-
tion of the temperature field. The plate was assumed
to be clamped at the base extremities and adibatic
walls were assumed throughout, except at the contact
of panel and fluid. The final result was obtained after
5 fluid-structure-thermal iterations. Figure 9 shows
the surface of the CFD grid and the results obtained.

8. CONCLUSIONS AND OUTLOOK

A fluid/structure/thermal interaction algorithm
based on the loose coupling of production CFD, CSD
and CTD codes has been described. The algorithm
allows a cost-effective re-use of existing software, with
a minimum amount of alterations required to account
for the interaction of the different media. Several
example runs using FEFLO98 as the CFD code,
and COSMIC-NASTRAN or DYNAS3D as the
CSD/CTD code, demonstrate the effectiveness of the
proposed methodology.

Future developments will center on:

- Treatment of reduced models, or models with in-
compatible dimensionalities;

- Improved reliability for complex geometries un-
dergoing severe deformations, especially when
contact is present;

- Extensions to other multidisciplinary problems,
including electromagnetic loads; and

- Extensions across different spatio/temporal
scales, i.e. the coupling of micro-physics codes
to these macro-physics codes.

9. ACKNOWLEDGMENTS

This work was partially supported by DNA and
AFOSR, with Drs. Mike Giltrud and Leonidas Sakell
as the technical monitors.

10. REFERENCES

[Ada98] P. Adamidis, A. Beck, U. Becker-Lemgau, Y.

Ding, M. Franzke, H. Holthoff, M. Laux, A.
Miiller, M. Miinch, A. Reuter, B. Steckel and R.
Tilch - Steel Strip Production - A Pilot Applica-
tion for Coupled Sinmulation With Several Calcu-
lation Systems; Metal Forming 98, Birmingham,
UK (1998).

[Alo95] J. Alonso, L. Martinelli and A. Jameson - Multi-

grid Unsteady Navier-Stokes Calculations with
Aeroelastic Applications; AIAA-95-0048 (1995).

[Bat88] J.T. Batina, R.M. Bennet, D.A. Seidel, H.J. Cun-
ningham and S.R. Bland - Recent Advances in
Transonic Computational Aeroelasticity; Comp.
Struct. 30, No.1/2, 29-37, (1988).

[Bau93] J.D. Baum. H. Luo and R. Lohner - Numerical
Simulation of a Blast Inside a Boeing 747; AIAA-
-93-3091 (1993).

[Bau94] J.D. Baum, H. Luo and R. Lohner - A New
ALE Adaptive Unstructured Methodology for
the Simulation of Moving Bodies; AIAA-94-0414
(1994).

[Bau95] J.D. Baum, H. Luo and R. Lohner - Numerical
Simulation of Blast in the World Trade Center;
ATAA-95-0085 (1995).

[Bau96] J.D. Baum, H. Luo, R. Lohner, C. Yang,
D. Pelessone and C. Charman - A Coupled
Fluid/Structure Modeling of Shock Interaction
with a Truck; ATAA-96-0795 (1996).

[Bau98] J.D. Baum, H. Luo and R. Léhner - The Nu-
merical Simulation of Strongly Unsteady Flows
With Hundreds of Moving Bodies; AIAA-98-0788
(1998).

[Bel84] T. Belytschko and Tsay - Explicit Algorithm
for Nonlinear Dynamics of Shells; Comp. Meth.
Appl. Mech. Eng. 43, 251-276 (1984).

(Bel94] T. Belytschko and I. Leviathan - Physical Stabi-
lization of the 4-Node Shell Element with One
Point Quadrature; Comp. Meth. Appl. Mech.
Eng. 113, 321-350, (1994).

[Bos93] A.H. Boschitsch and T.R. Quackenbush - High
Accuracy Computations of Fluid-Structure In-
teraction in Transonic Cascades; ATAA-93-0485
(1993).

[Ceb97] J.R. Cebral and R. Lohner - Conservative Load

Projection and Tracking for Fluid-Structure

Problems; AIAA J. 35, 4, 687-692 (1997).

J.R. Cebral and R. Ldhner - Fluid-Structure

Coupling: Extensions and Improvements; AIAA-

97-0858 (1997).

J.R. Cebral and R. Lohner - Interactive On-
Line Visualization and Collaboration for Paral-

lel Unstructured Multidisciplinary Applications;
ATAA-98-0077 (1998).

C.M. Charman, R.M. Grenier, and R.R. Nickell -
Large Deformation Inelastic Analysis of Impact
for Shipping Casks; Comp. Meth. Appl. Mech.
Eng. 33, 759-784, (1982).

COCOLIB Deliverable 1.1: Specification of the
COupling COmmunications
LiBrary; CISPAR ESPRIT Project 20161, See
http://www.pallas.de/cispar/pages/docu.htm
(1997).

[Cod98] CSD codes such as NASTRAN, ANSYS,
ABAQUS, MARC, NISA, ADINA, DYNA3D,
PAM-CRASH, etc., CFD codes such as FLU-
ENT, FIDAP, STAR-CD, RAMPANT, FEFLO,

[Ceb97]

[Ceb98]

[Cha82]

[Coc97]

ATAA-98-2419

PAM-FLOW, etc., CTD codes such as NAS-
TRAN, ANSYS, SINDA, etc.
J. Donea - An Arbitrary Lagrangian-Eulerian
Finite Element Method for Transient Dynamic
Fluid-Structure Interactions; Comp. Meth. Appl.
Mech. Eng. 33, 689-723 (1982).
G.C. Everstine and F.M. Henderson - Coupled
Finite Element/Boundary Element Approach for
Fluid-Structure Interaction; J. Acoust. Soc. Am.
87, 5, 1938-1947 (1990).
G.C. Everstine - Prediction of Low Frequency Vi-
brational Frequencies of Submerged Structures;
J. Vibrations and Acoustics 113, (1991)."
[Fel93] F.F. Felker - Direct Solution of Two-Dimensional
Navier-Stokes Equations for Static Aeroelasticity
Problems; AIAA J. 31, 1, 148-153 (1993).
D.P. Flanagan and T. Belytschko - A Uniform
Strain Hexahedron and Quadrilateral with Or-
thogonal Hourglass Control; Int. J. Num. Meth.
Eng. 17, 679-706, (1981).
J. Gaski and R.L. Collins - SINDA 1987-ANSI
Revised User’s Manual; Network Analysis Asso-
ciates, Inc. (1987).
G.L. Goudreau and J.O. Hallquist - Recent De-
velopments in Large-Scale Finite Element La-
grangean Hydrocode Technology; Comp. Meth.
Appl. Mech. Eng. 33, 725-757 (1982).
GRISSLi
- Numerical Simulation of Coupled Problems
on Parallel Computers; BMBF-Project, Con-
tract No. 01 IS 512 A-C/GRISSLi, Germany,
See http://www.gmd.de/SCAI/scicomp/grissli/
(1998).
G.P. Guruswamy - Unsteady Aerodynamic and
Aerolastic Calculations for Wings Using Euler
Equations; AIAA J. 28, 3, 461-469 (1990).
G.P. Guruswamy and C. Byun - Fluid-Structural
Interactions Using Navier-Stokes Flow Equations
Coupled with Shell Finite Element Structures;
ATAA-93-3087 (1993).
T.J.R. Hughes and W.K. Liu - Nonlinear Finite
Element Analysis of Shells: Part I. Three Dimen-
sional Shells; Comp. Meth. Appl. Mech. Eng. 26,
331-362 (1981).
P.S. Jackson and G.W. Christie - Numerical
Analysis of Three-Dimensional Elastic Mem-
brane Wings; AIAA J. 25, 5, 676-682, (1987).
A. Jameson - Artificial Diffusion, Upwind Bias-
ing, Limiters and Their Effect on Accuracy and
Multigrid Convergence in Transonic and Hyper-
sonic Flows; ATAA-93-3359 (1993).
(Knu73] D.N. Knuth - The Art of Computer Program-
ming , Vol. 3; Addison-Wesley (1973).
[Les96] M. Lesoinne and Ch. Farhat - Geometric Con-
servation Laws for Flow Problems With Moving
Boundaries and Deformable Meshes, and Their

[Don82}

[Eve90]

[Eve91]

[Fla81]

[Gas87]

[Gou82]

[Gri98]

[Gur90]

[Gur93]

[Hug81]

[Jac87]

[Jam93]

10

Impact on Aeroelastic Computations; Comp.
Meth. Appl. Mech. Eng. 134, 71-90 (1996).

[Lio95] M.-S. Liou - Progress Towards an Improved CFD
Method: AUSM*; AIAA-95-1701-CP (1995).

[Loh87] R. Lohner, K. Morgan, J. Peraire and M. Vah-
dati - Finite Element Flux-Corrected Transport
(FEM-FCT) for the Euler and Navier-Stokes
Equations; Int. J. Num. Meth. Fluids 7, 1093-
1109 (1987).

{L6h88] R. Lohner and P. Parikh - Three-Dimensional
Grid Generation by the Advancing Front
Method; Int. J. Num. Meth. Fluids 8, 1135-1149
(1988).

[LSh88] R. Lohner - An Adaptive Finite Element Solver

for Transient Problems with Moving Bodies;

Comp. Struct. 30, 303-317 (1988).

R. Lohner - Three-Dimensional Fluid-Structure

Interaction Using a Finite Element Solver and

Adaptive Remeshing; Computer Systems in En-

gineering 1, 2-4, 257-272 (1990).

R. Lohner and J. Ambrosiano - A Vectorized Par-

ticle Tracer for Unstructured Grids; J. Comp.

Phys. 91, 1, 22-31 (1990).

R. Lohner and J.D. Baum - Adaptive H-

Refinement on 3-D Unstructured Grids for Tran-

sient Problems; Int. J. Num. Meth. Fluids 14,

1407-1419 (1992).

R. Lohner - Some Useful Renumbering Strategies

for Unstructured Grids; Int. J. Num. Meth. Eng.

36, 3259-3270 (1993).

(LSh93] R. Lohner, R. Ramamurti and D. Martin - A

Parallelizable Load Balancing Algorithm; AIA A-

93-0061 (1993).

R. Lohner and J. McAnally - Transient and

Steady Heat Conduction Using an Adaptive Fi-

nite Element CAD-Based Approach; Int. J. Heat

and Fluid Flow 4, 311-327 (1994).

R. Lohner, C. Yang, J. Cebral, J.D. Baum, H.

Luo, D. Pelessone and C. Charman - Fluid-

Structure Interaction Using a Loose Coupling

Algorithm and Adaptive Unstructured Grids;

ATAA-95-2259 [Invited] (1995).

R. Lohner - Robust, Vectorized Search Algo-

rithms for Interpolation on Unstructured Grids;

J. Comp. Phys. 118, 380-387 (1995).

R. Lohner - Renumbering

Strategies for Unstructured- Grid Solvers Oper-

ating on Shared- Memory, Cache- Based Parallel

Machines; AIAA-97-2045-CP (1997).

H. Luo, J.D. Baum, R. Lohner and J. Ca-

bello - Adaptive Edge-Based Finite Element

Schemes for the Euler and Navier-Stokes Equa-

tions; ATAA-93-0336 (1993).

H. Luo, J.D. Baum and R. Lohner - Edge-Based

Finite Element Scheme for the Euler Equations;

AIAA J. 32, 6, 1183-1190 (1994).

[L5h90]

[L5h90]

[L&h92]

[L5h93)]

[L&h94]

[L5h95]

[L5h95]

[L5h97]

{Luo93]

[Luo94]

ATAA-98-2419

[Mac81] R. MacNeal - NASTRAN Theoretical Manual;
NASA Scientific and Technical Information Of-
fice (1981).
[Mam95] N. Maman and C. Farhat - Matching Fluid and
Structure Meshes for Aeroelastic Computations:
A Parallel Approach; Computers and Structures
94, 4, 779-785 (1995).
[Mes96] E. Mestreau and R. Lohner - Airbag Simulation
Using
[Mes96] E. Mestreau and R. Lohner - Airbag Simulation
Using Fluid/Structure Coupling; AIAA-96-0798
(1996).

[Pel95] D. Pelessone and C.M. Charman - Adaptive Fi-
nite Element Procedure for Non-Linear Struc-
tural Analysis; 1995 ASME/JSME Pressure Ves-
sels and Piping Conference, Honolulu, Hawaii,
July (1995).

D. Pelessone and C.M. Charman - An Adaptive
Finite Element Procedure for Structural Analysis
of Solids; 1997 ASME Pressure Vessels and Pip-
ing Conference, Orlando, Florida, July (1997).
D. Pelessone and C.M. Charman - A Gen-
eral Formulation of a Contact Algorithm with
Node/Face and Edge/Edge Contacts; 1998
ASME Pressure Vessels and Piping Conference,
San Diego, California, July (1998).
E.J. Probert, O. Hassan, K. Morgan and J.
Peraire - Adaptive Explicit and Implicit Finite
Element Methods for Transient Thermal Analy-
sis; Int. J. Num. Meth. Eng. 35, 655-670 (1992).
R.D. Rausch, J.T. Batina and H.T.Y. Yang
- Three-Dimensional Time-Marching Aerolas-
tic Analyses Using an Unstructured-Grid Euler
Method; AIAA J. 31, 9, 1626-1633 (1993).
P.L. Roe - Approximate Riemann Solvers,
Parameter Vectors and Difference Schemes;
J.Comp.Phys. 43, 357-372 (1981).
[Sed83] R. Sedgewick - Algorithms ; Addison-Wesley
(1983).
[Siv94] S. Sivier, E. Loth, J.D. Baum and R. Ldhner
- Unstructured Adaptive Remeshing Finite El-
ement Method for Dusty Shock Flows; Shock
Waves 4, 15-23 (1994). .
K.K. Tamma and R.R. Namburu - Computa-
tional Approaches With Applications to Non-
Classical Thermomechanical Problems; Appl.
Mech. Rev. 50, 9, 514-551 (1997).
E.A. Thornton and P. Dechaumphai - Coupled
Flow, Thermal and Structural Analysis of Aero-
dynamically Heated Panels; J. Aircraft 25, 11,
1052-1059 (1988).
B. van Leer - Towards the Ultimate Conser-
vative Scheme. II. Monotonicity and Conser-
vation Combined in a Second Order Scheme;
J.Comp.Phys. 14, 361-370 (1974).
[Whi93] R.G. Whirley and J.0. Hallquist - DYNA3D, A

[Pel97]

[Pel98]

[Pro92]
[Rau93)

[Roe81]

[Tam97]
[Thoss]

[vLe74]

11

ATAA-98-2419
Nonlinear Explicit, Three-Dimensional Finite El- (Zie88] O.C. Zienkiewicz and R. Taylor - The Finite El-

ement Code for Solid and Structural Mechanics - ement Method; McGraw Hill (1988).
User Manual; UCRL-MA-107254, Rev.1, (1993).

12

CTD

CFD i
DNS —
LES —
RANS —
t
Advanced cE‘:fr;;ns
Euler — Aeroelasticity
Fal | \/
Potential
Potential/ Classic
Acoustics— Aeroelasticity
No Fluid] |] J | cse
Rigid Rigid Modal Linear | Non-Linear Rupture,
Walls (Bsog%a Analysis FEM FEM Tearing..
Prescribed
Heat Flux/Temperature/Sinks
Linear
Heat Conduction Current
Non-Linear Efforts

Heat Conduction

Figure 1 Fluid-Structure-Thermal Interaction

Figure 2 Coupling Different Discretizations

13

ATAA-98-2419

CFD
\
q,0 x,v,T
Master
A
gl|T o.T||XV
Y
CTD CsD

Figure 4 Generic Weapon Fragmentation: Pressure at Different Times

Figure 5 Generic Weapon Fragmentation: Surface Velocity at Different Times

4

14

ATAA-98-2419

ATAA-98-2419

\

KO
PR
""‘ 0‘%.%"4 WAy,
oy
)

0
N
)‘ Kl

\/

\~

X0
N/

A

~/

/
o

AV
.
AVAVAY

oy
1>
INES

AN
N/

<]
NOKT
AN
aTa

5/

YOS

W

iy
sy

Al

i
12977/

k‘-;
NSRS
AN AN S et
(N SIOARSAS

\J
§
N

ey

‘;‘:‘u'ls"'ﬂss :‘:‘ﬂ
RS
mg'mm»

\RY

4

K
NP N f,‘y‘w"u
KA O
A A o A

9
i

Figure 6 Nose-Cone: Surface Grids for CFD and CSD/CTD

c)deformation d) temperature

Figure 7 CFD/CSD/CTD Results Obtained

ATAA-98-2419

Fluid

Ma=4.24
Re=0.66E6/ft

flq ufT

G R R ARl

T,n=0 T,n=0
Structure (panel)

Figure 8 Panel: Boundary Conditions

Fluid viscous mesh

Close-up view

/

/

e

Fluid density contours

Figure 9 Panel: Grid and Results Obtained

16

APPENDIX 5: BREAKUP AND TOPOLOGY CHANGE

20

FLUID-STRUCTURE INTERACTION ALGORITHMS
FOR RUPTURE AND TOPOLOGY CHANGE

Rainald Lohner?, Chi Yang!, Juan Cebral!, Joseph D. Baum?

Hong Luo?, Eric Mestreau?, Daniele Pelessone® and Charles Charman3

Institute for Computational Sciences and Informatics
MS 4C7, George Mason University, Fairfax, VA 22030, USA

http://www.science.gmu.edu/~rlohner

2Center for Hydrodynamics, Advanced Technology Group
Science Applications International Corporation

1710 Goodridge Drive, MS 2-3-1, McLean, VA 22102, USA
3General Atomics, San Diego, CA 92121, USA

Abstract. Essential methodologies for the routine simulation of fluid-structure interaction problems where
rupture and topology change are present are developed. These include: Automatic surface and topology
reconstruction, automatic grid sizing techniques, parallel remeshing and interpolation algorithms for topo-
logically different domains. Numerical examples show the effectiveness of the developed methodology.

Keywords. Fluid-Structure Interaction, CFD, CSD, Topology Change

1. INTRODUCTION

The advent of advanced numerical techniques, af-
fordable 3-D graphics and powerful compute servers
over the last decade has led to a rapid maturing of
the ‘core’ disciplines that encompass Computational
Mechanics: Computational Structural Dynamics
(CSD), Computational Fluid Dynamics (CFD) and
Computational Thermodynamics (CTD). The next
logical step has been the development of algorithms
for the solution of interdisciplinary problems. An
important class of problems that fall under this cat-
egory is given by Fluid-Structure interaction. These
problems are characterized by changes of (struc-
tural) geometry due to fluid pressure, shear and heat
loads that have a considerable effect on the flowfield,
changing the loads in turn. Examples of industrial
problems that fall under this category are: steady-
state aerodynamics of wings under cruise condi-
tions, such as civilian and military planes; aeroe-
lasticity of vibrating, i.e. elastic structures, such
as flutter [Bat88, Bos93, Byu94, Rau93, Alo95,
Byu98, Kim99] and buzz (aeroplanes, nozzles, tur-
bines), galloping (cables, bridges [Kva99]), noise
control [Eve90, Eve91] (cars, trains, submarines)
and maneuvering and control (missiles, drones);
‘weak and nonlinear’ structures, such as wetted

membranes (parachutes, airbags [Mes96], parasols,
tents, sails [Jac87]) and biological tissues (hearts,
lungs); ‘strong and nonlinear’ structures, such as
shock-structure interaction (command and control
centers, bunkers, vehicles [Bau93, Bau96, Kam96],
weapon fragmentation [Bau98, Bau99]), hypersonic
flight vehicles {Tho88, L6h98b]; and variable geom-
etry vehicles.

DNS —~
LES —
RANS [~
Euler —

Fult L
Potantial
Potsntial/|

Acousticy

csD

No Fluld |

Rigid Rigid Modal Linear | Non-Linear Rupturs,
Walls Body Analysis FEM FEM earing..
{6 DOF)

Prescribed
Heat Flux/Tempsrature/Sinks

Linear
Heat Conduction
Non-Linear
CTD Heat Conduction

Figure 1 Fluid-Structure-Thermal Interaction

The most important question is how to combine
these different disciplines to arrive at an accurate,
modular and cost-effective simulation approach that
can handle an arbitrary number of disciplines at the
same time. Considering the fluid-structure-thermal
interaction problem as an example, we see from the
list of possibilities displayed in Figure 1 that any
multi-disciplinary capability must have the ability to
quickly switch between approximation levels, mod-
els, and ultimately codes. It is clear that only those
approaches that allow maximum flexibility, i.e.:

- Linear and nonlinear CFD, CSD and CTD mod-

els;

- Different, optimally suited discretizations for
CFD, CSD and CTD domains;
Modularity in CFD, CSD and CTD models and
codes;
- Fast multi-disciplinary problem definition;
Fully automatic grid generation for arbitrary
geometrical complexity; and

- Integrated multi-disciplinary

[Ceb98] and data reduction

will survive in the long run. The question of how to
couple CSD and CFD codes has been treated exten-
sively in the literature. Two main approaches have
been pursued to date: strong coupling and loose cou-
pling. The strong or tight coupling technique solves
the discrete system of coupled, nonlinear equations
resulting from the CFD, CSD, CTD and interface
conditions in a single step. For an extreme ex-
ample of the tight coupling approach, where even
the discretization on the surfaces was forced to be
the same, see [Tho88]. The loose coupling technique
solves the same system using an iterative strategy
of repeated ‘CFD solution followed by CTD solu-
tion followed by CSD solution’ until convergence is
achieved (see Figure 2).

visualization

[]

*,w,T,(q) Y £,q,(T)

[Master]
: forces

: heat fluxes Y £ vy &)
¢ temperature T, (Q)

: deformations CSsD ~ cTD

: mesh position

: mesh velocity

Ixean

Figure 2 Loose Coupling

Special cases of this second approach include the
direct coupling in time of explicit CFD and CSD
codes and the incremental load approach of steady
aero- and hydro-elasticity. The variables on the
boundaries are transferred back and forth between
the different codes by a master code that directs
the multi-disciplinary run. Each code (CFD, CSD,
CTD, ..) is seen as a subroutine, or object, that
is called by the master code, or as a series of pro-
cesses that communicate via message passing. This
implies that the transfer of geometrical and physi-
cal information is performed between the different
codes without affecting their efficiency, layout, ba-
sic functionality, and coding styles. At the same
time, different CSD, CTD or CFD codes may be
replaced, making this a very modular approach.
This allows for a straightforward re-use of exist-
ing codes and the choice of the ‘best model’ for a
given application. The information transfer soft-
ware may be developed, to a large extent, indepen-
dently from the CSD, CTD and CFD codes involved,
again leading to modularity and software reuse. For
this reason, this approach has gained widespread
acceptance [Gur90, Loh90, Rau93, Gur93, Byu94,
Loh95a, Bau96, Mes96, Coc97, Bau98, Byu9s,
Gri98, Loh98b, Bau99, Kim99].

Optimal discretizations for the CSD and CFD prob-
lem are, in all probability, not going to be the
same. As an example, consider a commercial air-
craft wing undergoing aeroelastic loads. For an ac-
curate CFD solution using the Euler equations, an
accurate surface representation with 60-120 points
in the chord-direction will be required. For the CSD
model, a 20 x40 mesh of plate elements may be more
than sufficient. Any general fluid-structure coupling
strategy must be able to handle efficiently the in-
formation transfer between different surface repre-
sentations. This is not only a matter of fast in-
terpolation techniques [L6h95b, Mam95], but also
of accuracy, load conservation [Ceb97a,b], geomet-
rical fidelity [Ceb97b], and temporal synchroniza-
tion [Les96, Ceb97b]. When considering different
mesh sizes for the CSD and CFD surface represen-
tation, the enforcement of accuracy in the sense of:

os(x) ~ 0(x) (1)

and conservation in the sense of:

f= /o-sndF = /a;nd[‘ (2)

proves to be non-trivial. The best way to date
to handle this problem for similar surface rep-
resentations is via an adaptive Gaussian quadra-
ture [Ceb97a]. In many instances, the CSD model
will either be coarse as compared to the CFD model,
or may even be on a different modeling or abstrac-
tion level. On the other hand, it is the CSD model
that dictates the deformation of the CFD surface.
It is not difficult to see that an improper transfer
of CSD deformation to the CFD surface mesh can
quickly lead to loss of geometrical fidelity. Although
a number of recovery techniques have been proposed
to date [Gur93, L6h96, Ceb97b], the proper surface
deformation of ‘non-glued’ CFD, CSD and CTD sur-
faces, and an error indicator to warn the unsuspect-
ing user, still represent unanswered questions.

Having described the broader context of fluid-
structure-thermal interaction, we now turn our at-
tention to a particular class of problems: shock-
structure interaction, with rupture and topology
change. After reviewing the possible approaches in
Section 2, the elements required for a satisfactory
solution of this class of problems are dealt with in
turn: Surface Reconstruction and Definition (Sec-
tion 3), Automatic Remeshing (Sections 4,5) and
Interpolation (Section 6). Some examples are given
in Section 7. Finally, in Section 8, conclusions are
drawn and future work areas are described.

2. SHOCK-STRUCTURE INTERACTION

The interaction of strong shocks with structures will,
in most instances, lead to some form of structural
failure (cracking, spalation, breach, failure, collapse,
etc.). Within a loose coupling approach (see Fig-
ure 2), this implies that the ‘wetted CSD surface’
will change in time. This change in structural in-
tegrity also leads to new zones or volumes for the
fluid that formerly were not present, implying that
automatic gridding based on discrete surface data is
essential. Within CFD, two grid systems have ap-
peared that can handle automatically such time- and
topology-varying geometries:

a) Rigid, non-surface-conforming grids and

b) Moving, surface-conforming grids.
We briefly describe the advantages and disadvan-
tages of both classes.

a) Rigid Grids:

Here, the grid is basically laid over the volume to
be gridded. Adaptivity based on surface curvature

or geometric stiffness is used to refine the grid close
to bodies immersed in the flowfield. The cells cut
by surfaces are identified and treated with special
procedures. The advantages of this approach are
manifold:

- Construction of grids is extremely fast;

- The grid is not moving, leading to a faster
solver;

- Most of the algorithmic work is concentrated in
identifying and treating cut surface cells;

However, the approach also has disadvantages:

- A considerable portion of the grid may be
‘blacked out’;

- New cut cells and boundary conditions have to
be established every timestep;

- Topological consistency (water-tightness) after
cutting cells is not always easy to establish;

- The cut cells may become very small (the treat-
ment of small cells has become the focus of much
research [Ber92, Pem95, Aft97, Lan97]);

- Grids suitable for RANS calculations are diffi-
cult to construct.

b) Moving Grids:

This approach starts with a surface-conforming grid.
As the structure deforms, the mesh is moved. Exces-
sively distorted or negative elements are automati-
cally removed. The ensuing voids are remeshed and
the solution interpolated. If topological changes oc-
cur, the surface and volume mesh have to be regener-
ated, and the solution reinterpolated. This approach
would appear to have a lot of disadvantages:

- Moving grid (ALE) solvers are more expensive
than fixed grid solvers (recalculation of Jaco-
bians, extra fluxes, etc.);

- Geometric conservation laws have to be obeyed,
placing constraints on the solver [Les96];

- Moving the mesh requires extra computing re-
sources;

- Fast remeshing and interpolation algorithms are
required.

However, the approach also has advantages:

- Topological consistency (water-tightness) is
easy to establish;

- It is possible to construct grids suitable for
RANS calculations.

Over the last decade, we have pursued the second
approach, attempting to remedy the disadvantages
by:

- Fast ALE edge-based solvers [Luo93, Luo94,
Bau94, Bau95, L5h98a);

- Mass-matrix-based satisfaction of geometric
conservation laws [Bau95];
- Optimal mesh movement algorithms [L6h96b];
- Local remeshing [L6h90, Bau98];
- Parallel unstructured grid generation [L6h96a,
L3h99] and
- Optimal interpolation techniques for unstruc-
tured grids [Loh95b].
In the sequel, we describe recent developments that
have targeted the class of problems considered here:
fluid-structure interaction with rupture and topol-
ogy change.

3. SURFACE RECONSTRUCTION

Suppose that due to cracking, failure, spalation, etc.,
the ‘wetted surface’ of the CSD domain has been
changed. This new surface, given by a list of points
and faces, has to be matched with a correspond-
ing CFD surface. The CFD surface data typically
consists of surface segments defined by analytical
functions that do not change in time (such as ex-
terior walls, farfield boundaries, etc.), and surface
segments defined by triangulations (i.e. discrete
data) that change in time. These triangulations are
obtained from the ‘wetted CSD surface’ at every
timestep. When a change in topology is detected,
the new surface definition is recovered from the dis-
crete data, and joined to the surfaces defined ana-
lytically, as indicated in Figure 3.

Current CAD Data Base Remove Discrete Data
(Palytical «+ Discrete Dat

/

Updated CAD Data Base
(nalytical + Discrets Data)
4 e

y/

Updated CSD Data Recover Discrete CAD Data

g gt

Figure 3 Automatic Surface Reconstruction

The discrete surface is defined by a support trian-
gulation, with lines and end-points to delimit its
boundaries. In this sense, the only difference with
analytically defined surfaces is the (discrete) support
triangulation. The patches, lines and end-points of
the ‘wetted CSD surface’ are identified by compar-
ing the unit surface normals of adjacent faces. If

the scalar product of them lies below a certain tol-
erance, a ridge is defined. Corners are defined as
points that are attached to:

- Only one ridge;

- More than two ridges; or

- Two ridges with considerable deviation of unit

side-vector.

Between corners, the ridges form discrete lines.
These discrete lines either separate or are embedded
completely (i.e. used twice) in discrete surface
patches. Figure 4 sketches the recovery of surface
features and the definition of discrete surface patches
for a simple configuration. For more information, see

[L5h96c].

Figure 4 Discrete Surface Recovery

For the old surface definition data set, the surface
patches attached to wetted CSD surfaces are iden-
tified and all information associated with them is
discarded. The remaining data is then joined to the
new wetted CSD surface data, producing the up-
dated surface definition data set. This data set is
then used to generate the new surface and volume
grids.

The surface reconstruction procedure may be sum-
marized as follows:

- For the Updated Discrete Data, Obtain:
- Surface Patches + B.C.
- Lines
- End-Points
- Sources
- For the Old Analytical+Discrete Data:
- Remove Discrete Data
- Reorder Arrays
- Merge:
- Old Analytical Data
- Updated Discrete Data

4. ELEMENT SIZE AND SHAPE

Cracking, failure, spalation, etc. will lead to the ap-
pearance of many fragments or chunks in the flow-
field. The objects that are flying in the flowfield
come in many different sizes, and yet require suffi-
cient surface and volume resolution in order for the
CFD solver to yield acceptable forces, moments and
ultimately trajectories. A very simple way to ob-
tain surface grids that are acceptable is by defin-
ing a maximum element size that is linked to the
size of the flying object. This approach can lead
to highly distorted volume grids when neighbouring
objects with very different surface discretizations are
present. Compatible surface and volume grids may
be obtained by using either adaptive background
grids or sources [L6h96a, Loh97]. In the present
case, point sources were employed. The element size
as a function of the non-dimensional distance from
the source £(x):

09 = 86 ;€ =mas (0,15=10)

3

where r(x) is the shortest distance from the source
to x, ro the so-called zone of constant element size,
and r, the scaling length, is given by the polynomial:

6(€) = ao + a1€ + ax€? . (4)

Once the individual fragments or chunks are identi-
fied using an advancing front neighbour search over
the discrete surface patches, the center of gravity
and the average radius can be computed. This leads
to the desired mesh size parameter ag. The parame-
ters aj, az are then obtained from mesh smoothness
considerations.

5. AUTOMATIC PARALLEL REMESHING

Over the last five years, major efforts have been
. devoted to harness the power of parallel computer
platforms. While many CFD and CSD solvers have
been ported to parallel machines, grid generators
have lagged behind. For applications where remesh-
ing is an integral part of simulations, e.g. prob-
lems with moving bodies [Loh90, Mes93, Mes95,
Bau96, Kam96, L6h98b, Has98] or changing topolo-
gies [Bau98, Bau99], the time required for mesh re-
generation can easily consume more than 50% of the
total time required to solve the problem. Faced with
this situation, a number of efforts have been reported

on parallel grid generation [Loh92, dCo94, Sho95,
dCo95, Oku96, Che97, Oku97, Sai99].

The two most common ways of generating un-
structured grids are the Advancing Front Tech-
nique (AFT) [Per87, Per88, Loh88a,b, Per90, Per9?2,
Jin93, Fry%4, Loh96] and the Generalized Delau-
nay Triangulation (GDT) [Bak89, Geo91, Wea92,
Wea94, Mar95]. The AFT introduces one element
at a time, while the GDT introduces a new point at
a time. Thus, both of these techniques are, in prin-
ciple, scalar by nature, with a large variation in the
number of operations required to introduce a new
element or point. While coding and data structures
may influence the scalar speed of the ‘core’ AFT or
GDT, one often finds that for large-scale applica-
tions, the evaluation of the desired element size and
shape in space, given by background grids, sources
or other means [L5h96] consumes the largest fraction
of the total grid generation time. Unstructured grid
generators based on the AFT may be parallelized by
invoking distance arguments, i.e. the introduction of
a new element only affects (and is affected by) the
immediate vicinity. This allows for the introduction
of elements in parallel, provided that sufficient dis-
tance lies between them.

a) oy b))
(] 1]
T . /' wauws Boundary
he = Cutrent Front
% \ o J kK J —— Otd Front
/ /4 L
SHENCHEE LU
XH *H NI
L= N y [
AN AN
R R
N N NI

Figure 5 Parallel Grid Generation

A convenient way of delimiting the possible zones
where elements may be introduced by each processor
is via boxes. These boxes may be obtained in a va-
riety of ways, i.e. via bins, binary recursive trees, or
octrees. We have found the octree to be the best of
these possibilities, particularly for grids with a large
variation of element size. In order to recover a paral-
lel gridding procedure that resembles closely the ad-
vancing front technique on scalar machines, only the
boxes covering the active front in regions where the
smallest new elements are being introduced are con-
sidered. This has been shown schematically in Fig-

ure 5a,b for a simle 2-D domain. After these boxes
have been filled with elements (Figure 5c), the pro-
cess starts anew: a new octree is built (Figure 5d),
new boxes are created (Figure 5e) and meshed in
parallel (Figure 5f). This cycle is repeated until no
faces are left in the active front (Figures 5g-1).

At the end of each parallel gridding pass, each one of
the boxes gridded can have an internal boundary of
faces. For a large number of boxes, this could result
in a very large number of faces for the active front.
This problem can be avoided by shifting the boxes
slightly, and then regridding them again in parallel,
as shown in Figure 6. This simple technique has the
effect of eliminating almost all of the faces between
boxes with a minor modification of the basic parallel
gridding algorithm.

I

Figure 6 Shift and Regrid Technique

If we define as dp;, the minimum element size in
the active front, and as s,,;, the minimum box size
in which elements are to be generated, the parallel
AFT proceeds as follows:
WHILE: There are active faces left:

- Form an octree with minimum octant size smin
for the active points;
Retain the octants that have faces that will gen-
erate elements of size dpnin t0 ¢f - dmin;
If too many octants are left: agglomerate them
into boxes;
DO ISHFT=0,2:

- IF: ISHFT.NE.O:

Shift the boxes by a preset amount;
- ENDIF
- Generate, in parallel, elements in these
boxes, allowing only elements up to a size
of ¢1 - din;

- ENDDO

- Increase dpmin = 1.5 * dimin, Smin = 1.5 * sSpmin;
ENDWHILE

The increase factor allowed is typically in the range
cr = 1.5 — 2.0. Figures 7a-c show an example ob-
tained on an SGI Origin 2000 running in shared

memory mode. The case considered is the garage of
an office complex, and had approximately 9.2 mil-
lion tetrahedra. As one can see, although not per-
fect, speedups are comparable to those of production
CFD codes. For more details on the parallel grid
generator, see [Loh99]

Figure 7a Garage: Wireframe

20— ——y 10000
18 i Speedup Ideal
i Speedup SGI-02K ----»-—-
1B ¢ " Time SGIO2K xr 18000
L O N S
; e =
g 21 - 6000
@ 10 e =
2 H =
@ 8 o {4000 3
6 : A 2
i, ©
ar {2000 ©
2t 7 e
0

0 2 4 6 8 10 12 14 16 18 20
Nr. of Processors

Figure 7b Garage: Speedups Obtained

6. INTERPOLATION WITH TOPOLOGY
CHANGE

Once a new mesh has been generated, the solution
from the previous timestep (on the previous mesh)
has to be interpolated. A series of optimal interpo-
lation algorithms for unstructured grids have been
described in [L6h95b]. Whenever new fluid domains
are created due to failure, cracking and spalation,
interpolating the fluid solution from the previous
timestep to these new domains will end in failure,
as there are no possible host elements in the old
mesh. Figure 8 shows a typical case where a wall
that initially separates two rooms breaks, changing
the topology of the fluid and solid domains.

=

Figure 8 Interpolation With Different Domains

It is therefore important to identify points of the
new mesh that lie outside the confines of the old
mesh. A simple way that has proven successful is to
form a Cartesian mesh or bins (Figure 9). A loop is
then performed over the elements of the old mesh,
marking the bins covered by elements. In a second
loop over the points of the new grid, all points that
fall into bins not covered by the old grid are marked
as impossible to interpolate. This procedure can be
done recursively by obtaining the confines of the vol-
ume where points have been marked as impossible,
leading to so-called ‘telescoping’ of the bin search
region.

Empty Bins

Figure 9 Marking Impossible Points

No attempt is then made to interpolate the points
marked as outside the old mesh. The unknowns for

these points can be extrapolated using different pro-
cedures:

Advancing layers (most often used for sub-
sonic/isotropic flows);

- Upstream (used primarily for supersonic flows);
Closest known point (for cracks); or

- Via user-prescribed subroutine (for special
cases).

7. EXAMPLES

Two examples are included that show the effective-
ness of the procedures developed to date. In both
instances, the CSD solver used is GA-DYNA [Pel95,
Pel97, Pel98] and the CFD solver used is FEM-FCT
within FEFLO98 [Loh87,].

6.1 Fragmenting Weapon:

The first case considered is that of a fragmenting
weapon. The detonation and shock propagation
were modeled using a JWL equation of state. At the
beginning, the walls of the weapon separate two flow
domains: the inner one, consisting of high explosive,
and the outer one, consisting of air. As the structure
of the weapon begins to fail, fragments are shrunk
and the ensuing gaps are automatically remeshed,
leading to one contuinuous domain. The mesh in the
fluid domain was adapted using sources for geomet-
ric fidelity [Loh96a} and the modified H2-seminorm
error indicator proposed in [Loh87, Loh92]. At the
end of the run, the flow domain contains approxi-
mately 750 independently flying bodies and 16 mil-
lion elements. Figures 8-10 show the development of
the detonation. The fragmentation of the weapon is
clearly visible. Figure 11 shows the correlation with
the observed experimental evidence.

Figure 10a Fragmenting weapon at 131msec

Tl
..,;gﬁy%i.. !
0000 £, srATL
1

]

i

[RREY

Figure 10d Radial velocity as a function
of fragment weight

6.2 Blast Close to a Wall

This example shows the capabilities of the present
fluid-structure interaction methodology to treat sit-
uations with extreme transient loading, plastic de-
formation, failure, breakup, topology change and au-
tomatic remeshing. The blast was modeled using the

159 2000
wipop

Euler equations with ideal gas equation of state.

Figure 11a Pressure at t=0.0001,0.0002

Figure 11b Pressure at t=0.0003,0.0004

Figure 11c¢ Pressure at t=0.0005,0.0006

Figure 11d Pressure at t=0.0008,0.0010

Initially, a ‘high energy’ state given by:

p

0.25 gr/em®, v = 0.00 cm/sec, p = 0.43¢ + 09 dynes
within the sphere with radius r = 8.0 c¢m centered
at ¢ = 34.29 cm,y = —10.00 ¢cm, z = 19.05 cm

Figure 12¢ Surface Velocity at t=0.0006

in the lower room, and a quiescent air state given

by: p = 0.00104 gr/cm®,v = 0.00 cm/sec,p =
0.86185¢ + 06 dynes was prescribed. The wall was
assumed to be of reinforced concrete. The mate-
rial model used was elasto/perfect plastic. Failure
was assumed to occur when the average strain in
an element exceeded 60%. At the beginning, the
wall separates the two rooms. As the wall begins
to fail the larger fragments are shrunk while keeping
their mass and moments of inertia intact, leading to
gaps. The smaller fragments are removed completely
from the structure and converted to spheres that ex-
change mass, momentum and energy with the fluid,
exchange momentum with the remaining structure
via contact, but can not interact between them, nor
‘occupy space’. The ensuing gaps that result due
to shrinkage or element removal are automatically
remeshed and filled with fluid. At some point during
the run, the flow domain contains approximately 250
independently flying bodies and 1 million elements.
Figures 1la-d show a planar cut through the two
rooms. The impact of the blast wave on the wall, its
reflection, the ensuing wall failure and eventual pen-
etration of the blast wave into the adjacent room
are clearly visible. Figures 12a-c show the surface
velocity and fragments of the wall.

8. CONCLUSIONS AND OUTLOOK

Several methodologies that are essential for the rou-
tine simulation of fluid-structure interaction prob-
lems where rupture and topology change are present
have been developed. These include:
- Surface and topology reconstruction;
- Automatic sizing techniques;
- Parallel remeshing; and
- Interpolation algorithms for topologically differ-
ent domains.
Numerical examples indicate that with the devel-
oped methodology a new level of realism and so-
phistication has been achieved for this class of prob-
lems. Among the many outstanding issues we just
mention:
- Parallelization for distributed memory ma-
chines;
- Automatic remeshing for RANS simulations;
and
- Proper treatment of cracking.
At the threshold of a new century, we envision a
multi-disciplinary, database-linked framework that
is accessible from anywhere on demand, simulations
with unprecedented detail and realism carried out

in fast succession, virtual meeting spaces where ge-
ographically displaced designers and engineers dis-
cuss and analyze collaboratively new ideas, and first-
principles driven virtual reality.

9. ACKNOWLEDGEMENTS

This research was partially supported by AFOSR
and DTRA. Drs. Leonidas Sakell, Michael Giltrud
and Darren Rice acted as technical monitors.

10.
[A£t97]

REFERENCES

M.J. Aftosmis, M.J. Berger and J.E. Melton -
Robust and Efficient Cartesian Mesh Genera-

tion for Component-Based Geometry; AIAA-
97-0196 (1997).

[Ber92]

[Bos93]

[Byu94]

[Byu98]

[Alo95] J. Alonso, L. Martinelli and A. Jameson - [Ceb97a]

[Baks9]

[Bat88]

[Bau93]

[Bau94]

[Bau95]

[Bau96]

[Bau98]

[Bau99]

Multigrid Unsteady Navier-Stokes Calculations
with Aeroelastic Applications; AIAA-95-0048
(1995).

T.J. Baker - Developments and Trends in
Three-Dimensional Mesh Generation. Appl.
Num. Math. 5, 275-304 (1989).

J.T. Batina, R.M. Bennet, D.A. Seidel, H.J.
Cunningham and S.R. Bland - Recent Ad-
vances in Transonic Computational Aeroelastic-
ity; Comp. Struct. 30, No.1/2, 29-37, (1988).
J.D. Baum. H. Luo and R. Lohner - Numeri-
cal Simulation of a Blast Inside a Boeing 747;
ATAA-93-3091 (1993).

J.D. Baum, H. Luo and R. LSéhner - A New
ALE Adaptive Unstructured Methodology for
the Simulation of Moving Bodies; AIAA-94-
0414 (1994).

J.D. Baum, H. Luo and R. Lohner - Validation
of a New ALE, Adaptive Unstructured Mov-
ing Body Methodology for Multi-Store Ejection
Simulations; AIAA-95-1792 (1995).

J.D. Baum, H. Luo, R. L&hner, C. Yang,
D. Pelessone and C. Charman - A Coupled
Fluid/Structure Modeling of Shock Interaction
with a Truck; AIAA-96-0795 (1996).

J.D. Baum, H. Luo and R. Lohner - The Nu-
merical Simulation of Strongly Unsteady Flows
With Hundreds of Moving Bodies; AIAA-98-
0788 (1998).

J.D. Baum, H. Luo, E. Mestreau, R. Léhner,
D. Pelessone and C. Charman - A Coupled
CFD/CSD Methodology for Modeling Weapon
Detonation and Fragmentation; AIAA-99-0794
(1999).

[Ceb9s]

[Che97]

[Coc97]

[dCo94]

[dCo95]

[Don82]

[Eve90]

10

M.J. Berger and R.J. LeVeque - An Adaptive
Cartesian Mesh Algorithm for the Euler Equa-
tions in Arbitrary Geometries; AIAA-92-0443
(1992).

A.H. Boschitsch and T.R. Quackenbush - High
Accuracy Computations of Fluid-Structure In-
teraction in Transonic Cascades; AIAA-93-0485
(1993).

C. Byun and G.P. Guruswamy - Wing-Body
Aeroelasticity Using Finite-Difference Fluid/
Finite-Element Structural Equations on Paral-
lel Computers; AIAA-94-1487 (1994).

C. Byun and G.P. Guruswamy - Aeroelastic
Computations on Wing- Body- Control Config-
urations on Parallel Computers; J. Aircraft 35,
288-294 (1998).

J.R. Cebral and R. Lohner - Conservative Load
Projection and Tracking for Fluid-Structure
Problems; AIAA J. 35, 4, 687-692 (1997).

[Ceb97b] J.R. Cebral and R. Lohner - Fluid-Structure

Coupling: Extensions
ATAA-97-0858 (1997).
J.R. Cebral and R. Léhner - Interactive On-
Line Visualization and Collaboration for Par-
allel Unstructured Multidisciplinary Applica-
tions; AIAA-98-0077 (1998).

L.P. Chew, N. Chrisochoides and F. Sukup -
Parallel Constrained Delaunay Meshing; Proc.
1997 Workshop on Trends in Unstructured
Mesh Generation, June (1997).

COCOLIB Deliverable 1.1: Specification of the
COupling COmmunications LIBrary; CISPAR
ESPRIT Project 20161, See
http://www.pallas.de/cispar/pages/docu.htm
(1997).

H.L. de Cougny, M.S. Shephard and C. Ozturan
- Parallel Three-Dimensional Mesh Generation;
Computing Systems in Engineering 5, 311-323
(1994).

H.L. de Cougny, M.S. Shephard and C. Oztu-
ran - Parallel Three-Dimensional Mesh Gener-
ation on Distributed Memory MIMD Comput-
ers; Tech. Rep. SCOREC Rep. # 7, Rensselaer
Polytechnic Institute (1995).

J. Donea - An Arbitrary Lagrangian-Eulerian
Finite Element Method for Transient Dynamic
Fluid-Structure Interactions; Comp. Meth.
Appl. Mech. Eng. 33, 689-723 (1982).

G.C. Everstine and F.M. Henderson - Coupled
Finite Element/Boundary Element Approach

and Improvements;

for Fluid-Structure Interaction; J. Acoust. Soc.
Am. 87, 5, 1938-1947 (1990).

[Eve91] G.C. Everstine - Prediction of Low Frequency
Vibrational Frequencies of Submerged Struc-
tures; J. Vibrations and Acoustics 113, (1991).

[Fel93] F.F. Felker - Direct Solution of
Two-Dimensional Navier-Stokes Equations for
Static Aeroelasticity Problems; AIAA J. 31, 1,
148-153 (1993).

[Fry94] J. Frykestig - Advancing Front Mesh Gener-
ation Techniques with Application to the Fi-
nite Element Method; Pub. 94:10, Chalmers
University of Technology; Gdoteborg, Sweden
(1994).

[Geo91] P.L. George, F. Hecht and E. Saltel - Auto-

matic Mesh Generator With Specified Bound- [L6h88a]

ary; Comp. Meth. Appl. Mech. Eng. 92, 269-288
(1991).

[Gur90] G.P. Guruswamy - Unsteady Aerodynamic and [Lh88b]

Aerolastic Calculations for Wings Using Euler
Equations; AIAA J. 28, 3, 461-469 (1990).
G.P. Guruswamy and C. Byun - Fluid-
Structural Interactions Using Navier-Stokes
Flow Equations Coupled with Shell Finite El-
ement Structures; AIAA-93-3087 (1993).

O. Hassan, L.B. Bayne, K. Morgan and N. P.
Weatherill - An Adaptive Unstructured Mesh
Method for Transient Flows Involving Mov-
ing Boundaries; pp. 662-674 in Computational
Fluid Dynamics 98 (K.D. Papailiou, D. Tsa-

[Gur93]

| [Has98]

halis, J. Périaux and D. Knorzer eds.) Wiley [Loh95a]

(1998).

P.S. Jackson and G.W. Christie - Numerical
Analysis of Three-Dimensional Elastic Mem-
brane Wings; AIAA J. 25, 5, 676-682, (1987).

[Jac8T7]

[Jin93]
structured Tetrahedral Meshes by the Advanc-
ing Front Technique; Int. J. Num. Meth. Eng.
36, 1805-1823 (1993).

[Kam96] A. Kamoulakos, V. Chen, E. Mestreau and R.

H. Jin and R.I. Tanner - Generation of Un- [L5h95b]

(1999).
[Lan97] A.M. Landsberg and J.P. Boris - The Virtual
Cell Embedding Method: A Simple Approach
for Gridding Complex Geometries; AIAA-97-
1982 (1997).
M. Lesoinne and Ch. Farhat - Geometric Con-
servation Laws for Flow Problems With Moving
Boundaries and Deformable Meshes, and Their
Impact on Aeroelastic Computations; Comp.
Meth. Appl. Mech. Eng. 134, 71-90 (1996).
R. Lohner, K. Morgan, J. Peraire and M. Vah-
dati - Finite Element Flux-Corrected Transport
(FEM-FCT) for the Euler and Navier-Stokes
Equations; Int. J. Num. Meth. Fluids 7, 1093-
1109 (1987).
R. Lohner - Some Useful Data Structures for
the Generation of Unstructured Grids; Comm.
Appl. Num. Meth. 4, 123-135 (1988).
R. Lohner and P. Parikh - Three-Dimensional
Grid Generation by the Advancing Front
Method; Int. J. Num. Meth. Fluids 8, 1135-1149
(1988).
R. Lohner - Three-Dimensional Fluid-Structure
Interaction Using a Finite Element Solver and
Adaptive Remeshing; Computer Systems in En-
gineering 1, 2-4, 257-272 (1990).
R. Lohner and J.D. Baum - Adaptive H-
Refinement on 3-D Unstructured Grids for
Transient Problems; Int. J. Num. Meth. Fluids
14, 1407-1419 (1992).
R. Lohner, C. Yang, J. Cebral, J.D. Baum, H.
Luo, D. Pelessone and C. Charman - Fluid-
Structure Interaction Using a Loose Coupling
Algorithm and Adaptive Unstructured Grids;
AITAA-95-2259 [Invited] (1995).
R. Lohner - Robust, Vectorized Search Algo-
rithms for Interpolation on Unstructured Grids;
J. Comp. Phys. 118, 380-387 (1995).

[Les96)

[L&h8T]

[L&h90]

[L&h92]

[Loh95c] R. Lohner - Mesh Adaptation in Fluid Mechan-

ics; Eng. Fracture Mech. 50, 819-847 (1995).

Lohner - Finite Element Modelling of Fluid/ [L6h96a] R. Lohner - Extending the Range of Ap-

Structure Interaction in Explosively Loaded
Aircraft Fuselage Panels Using PAMSHOCK/
PAMFLOW Coupling; Conf. on Spacecraft

plicability and Automation of the Advancing
Front Grid Generation Technique; AIAA-96-
0033 {1996).

Structures, Materials and Mechanical Testing, [L6h96b] R. Léhner and Chi Yang - Improved ALE Mesh

Noordwijk, The Netherlands, March (1996).
[Kim99] T. Kimura, H. Takemiya and R. Onishi -

Velocities for Moving Bodies; Comm. Num.
Meth. Eng. 12, 599-608 (1996).

CFD/CSD Coupled Simulation on Parallel [L6h96c] R. Lohner - Regridding Surface Triangulations;

Computer Cluster; ATAA-99-3275-CP (1999).
[Kva99] T. Kvamsdal et al. eds. - Computational Meth-
ods for Fluid-Structure Interaction, Tapir Press

J. Comp. Phys. 126, 1-10 (1996).
[Loh97] R. Lohner - Automatic Unstructured Grid Gen-
erators; Finite Elements in Analysis and Design

11

[L&h98a]

[L6h98b]

[L5h99]

[Luo93]

[Luo94]

[Mam95]

[Mar95]

[Mes93]

[Mes96]

[Oku96]

[Oku9T7]

[Pel95]

25, 111-134 (1997).

R. Lohner - Renumbering Strategies for
Unstructured- Grid Solvers Operating on
Shared- Memory, Cache- Based Parallel Ma-
chines; Comp. Meth. Appl. Mech. Eng. 163, 95-
109 (1998).

R. Lohner, C. Yang, J. Cebral, J.D. Baum, H.
Luo, D. Pelessone and C. Charman - Fluid-
Structure-Thermal Interaction Using a Loose
Coupling Algorithm and Adaptive Unstruc-
tured Grids; AIAA-98-2419 [Invited] (1998).
R. Lohner and J. Cebral - Parallel Ad-
vancing Front Grid Generation; Proc. 8th
Int. Meshing Roundtable, October (1999)
http://www.cfd.sandia.gov/8imr.html.

H. Luo, J.D. Baum, R. Lohner and J. Ca-
bello - Adaptive Edge-Based Finite Element
Schemes for the Euler and Navier-Stokes Equa-
tions; AIAA-93-0336 (1993).

H. Luo, J.D. Baum and R. Lohner - Edge-Based
Finite Element Scheme for the Euler Equations;
AJAA J. 32, 6, 1183-1190 (1994).

N. Maman and C. Farhat - Matching Fluid
and Structure Meshes for Aeroelastic Compu-
tations: A Parallel Approach; Computers and
Structures 54, 4, 779-785 (1995).

D.L. Marcum and N.P. Weatherill - Unstruc-
tured Grid Generation Using Iterative Point In-
sertion and Local Reconnection; ATAA J. 33, 9,
1619-1625 (1995).

E. Mestreau, R. Lohner and S. Aita - TGV
Tunnel-Entry Simulations Using a Finite Ele-
ment Code with Automatic Remeshing; AIAA-
93-0890 (1993).

E. Mestreau and R. Lohner - Airbag Simula-
tion Using Fluid/Structure Coupling; AIA A-96-
0798 (1996).

T. Okusanya and J. Peraire - Parallel Unstruc-
tured Mesh Generation; Proc. 5th Int. Conf.
Num. Grid Generation in CFD and Related
Fields, Mississippi, April (1996).

T. Okusanya and J. Peraire - 3-D Parallel
Unstructured Mesh Generation; Proc. Joint
ASME/ASCE/SES Summer Meeting (1997).
D. Pelessone and C.M. Charman - Adap-
tive Finite Element Procedure for Non-Linear
Structural Analysis; 1995 ASME/JSME Pres-
sure Vessels and Piping Conference, Honolulu,
Hawaii, July (1995).

[Pel97]

[Pel98]

[Pem95]

[Per87]

[Per88]

[Per90]

[Per92]

[Qui94]

[Rau93]

[Tho88]

[Wea92]

[Wea94]

12

D. Pelessone and C.M. Charman - An Adap-
tive Finite Element Procedure for Structural
Analysis of Solids; 1997 ASME Pressure Ves-
sels and Piping Conference, Orlando, Florida,
July (1997).

D. Pelessone and C.M. Charman - A Gen-
eral Formulation of a Contact Algorithm with
Node/Face and Edge/Edge Contacts; 1998
ASME Pressure Vessels and Piping Conference,
San Diego, California, July (1998).

R.B. Pember, J.B. Bell, P. Colella, W.Y.
Crutchfield and M.L. Welcome - An Adaptive
Cartesian Grid Method for Unsteady Compress-
ible Flow in Irregular Regions - sl J. Comp.
Phys. 120, 278 (1995).

J. Peraire, M. Vahdati, K. Morgan and O.C.
Zienkiewicz - Adaptive Remeshing for Com-
pressible Flow Computations; J. Comp. Phys.
72, 449-466 (1987).

J. Peraire, J. Peiro, L. Formaggia K. Morgan
and O.C. Zienkiewicz - Finite Element Euler
Calculations in Three Dimensions; Int. J. Num.
Meth. Eng. 26, 2135-2159 (1988).

J. Peraire, K. Morgan and J. Peiro - Unstruc-
tured Finite Element Mesh Generation and
Adaptive Procedures for CFD; AGARD-CP-
464, 18 (1990).

J. Peraire, K. Morgan, and J. Peiro - Adaptive
Remeshing in 3-D; J. Comp. Phys. (1992).
J.J. Quirk - An Alternative to Unstructured
Grids for Computing Gas Dynamic Flows
Around Arbitrarily Complex Two-Dimensional
Bodies; Comp. Fluids 23, 1, 125-142 (1994).
R.D. Rausch, J.T. Batina and H.T.Y. Yang
- Three-Dimensional Time-Marching Aerolas-
tic Analyses Using an Unstructured-Grid Euler
Method; ATAA J. 31, 9, 1626-1633 (1993).
E.A. Thornton and P. Dechaumphai - Coupled
Flow, Thermal and Structural Analysis of Aero-
dynamically Heated Panels; J. Aircraft 25, 11,
1052-1059 (1988).

N.P. Weatherill - Delaunay Triangulation in
Computational Fluid Dynamics; Comp. Math.
Appl. 24, 5/6, 129-150 (1992).

N.P. Weatherill and O. Hassan - Efficient Three-
Dimensional Delaunay Triangulation with Au-
tomatic Point Creation and Imposed Boundary
Constraints; Int. J. Num. Meth. Eng. 37, 2005-
2039 (1994).

APPENDIX 6: PARALLEL FLOW SOLVERS

21

v"‘ .

Reprinted from

Computer methods
in applied |
mechanics and
engineering

Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

Renumbering strategies for unstructured-grid solvers operating on
shared-memory, cache-based parallel machines

Rainald Lohner

GMUICSI, The George Mason University, Fairfax, VA 22030-4444, USA

Received 30 July 1996; revised 18 June 1997

.

ELSEVIER

w

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

EDITORS: J.H. ARGYRIS, STUTTGART and LONDON

T.J.R. HUGHES, STANFORD, CA
J.T. ODEN, AUSTIN, TX

EDITORIAL ADDRESSES

John H. ARGYRIS

Institut fiir Computer Anwendungen
Pfaffenwaldring 27

D-70569 STUTTGART

Germany

(Editorial Office)

ASSOCIATE EDITORS

K. APPA, Lake Forest, CA

L. BABUSKA, Austin, TX

A.J. BAKER, Knoxville, TN

T.B. BELYTSCHKO, Evanston, IL
F. BREZZI, Pavia

P.G. CIARLET, Paris

L. DEMKOWICZ, Austin, TX

R.E. EWING, College Station, TX
R. GLOWINSKI, Houston, TX

ADVISORY EDITORS

M.P. ARNAL, Baden

J.S. ARORA, fowa City, IA
K.J. BATHE, Cambridge, MA
P.G. BERGAN, Hgvik

J.F. BESSELING, Delft

M.O. BRISTEAU, Le Chesnay
C. CANUTO, Turin

J.L. CHENOT, Valbonne

Y.K. CHEUNG, Hong Kong
T.J. CHUNG, Huntsville, AL
T.A. CRUSE, Nashville, TN
E.R. DE ARANTES E OLIVEIRA, Lisbon
J. DONEA, Ispra
A.ERIKSSON, Stockholm

C. FARHAT, Boulder, CO
C.A. FELIPPA, Boulder, CO
C.J. FITZSIMONS, Baden-Dattwil
M. GERADIN, Liége

R. GRUBER, Manno

H.-A. HAGGBLAD, Luled
E.J.HAUG, lowa City, IA

Editorial Secretary: Marlies PARSONS

Thomas J.R. HUGHES
Division of

Applied Mechanics
Durand Building
Room No. 281
Stanford University
STANFORD

CA 94305-4040, USA

RW.LEWIS, Swansea

J.L. LIONS, Paris

F.L. LITVIN, Chicago, IL

H. LOMAX, Moffet Field, CA
L.S.D. MORLEY, Farnborough
N. OLHOFF, Aalborg

E. ONATE, Barcelona

M. PAPADRAKAKIS, Athens

J.C. HEINRICH, Tucson, AZ
U. HEISE, Aachen

J. HELLESLAND, Oslo

C. HOEN, Oslo

M. HOGGE, Liége

S. IDELSOHN, Santa Fe

L. JOHANSSON, Linképing
C. JOHNSON, Géteborg

M. KAWAHARA, Tokyo
SW.KEY, Albuquerque, NM
A.KLARBRING, Linképing
M. KLEIBER, Warsaw

P. LADEVEZE, Chachan
A.LEGER, Clamart

B.P. LEONARD, Akron, OH
P. LE TALLEC, Paris

WK. LIU, Evanston, IL

G. MAIER, Milan

H.A. MANG, Vienna
A.NEEDLEMAN, Providence, RI
M.P. NIELSEN, Lyngby

W. PRAGER
Founding Editor
(deceased 1980)

J. Tinsley ODEN

The University of Texas
The Texas Institute for
Computational and
Applied Mathematics
Taylor Hall 2.400
AUSTIN

TX 78712, USA

J. PLANCHARD, Clamart

E. RAMM, Stuttgart

G. STRANG, Cambridge, MA
R.L. TAYLOR, Berkeley, CA
S.9. WILLE, Oslo

G. YAGAWA, Tokyo

D.ZHU, Xi’an

O.C. ZIENKIEWICZ, Swansea

A K. NOOR, Hampton, VA

R. OHAYON, Paris

J. PERIAUX, Saint Cloud

QIAN Ling-xi (L.H. Tsien), Dalian
AK.RAO, Hyderabad

B.D. REDDY, Rondebosch
J.N.REDDY, College Station, TX
E. RIKS, Delft

G.LN. ROZVANY, Essen

W. SCHIEHLEN, Stuttgart

M.S. SHEPHARD, Troy, NY

E. STEIN, Hannover

PK. SWEBY, Reading

M. TANAKA; Nagano

T.E. TEZDUYAR, Houston, TX
CW. TROWBRIDGE, Kidlington
H. VAN DER VORST, Utrecht
J.R. WHITEMAN, Uxbridge

K.J. WILLAM, Boulder, CO

T. ZIMMERMANN, Lausanne

Advertising information. Advertising orders and en

quiries can be sent to: Europe and ROW: Rachel Gresle-Farthing, Elsevier Science Ltd., Advertising

Department, The Boulevard, Langford Lane, Kidlington, Oxford OXS IGB, UK; phone: (+44) (1865) 843565; fax: (+44) (1865) 843976; e-mail:

r.gresle-farthing @elsevier.co.uk. USA and Canada: Elsevier Scienc
phone: (+1) (212) 633 3815; fax: (+1) (212) 633 3820; e-
Higashi-Azabu {-chome, Minato-ku, Tokyo 106, Japan;

e Inc., Mr Tino DeCarlo, 655 Avenue of the Americas, New York, NY 10010-5107, USA;
mail: t.decarlo@elsevier.com. Japan: Elsevier Science K.K., Advertising Department, 9-15

phone: (+81) (3) 5561-5033; fax: (+81) (3) 5561 5047.

® The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

- '\W«u\m‘mw\>ww'm?.)m:

o AsesnewATeRy

W. PRAGER
Founding Editor
(deceased 1980)

art

e, MA
v, CA

swansea

VA

wd
sien), Dalian
L

sch
Station, TX

sen
tgart
2y, NY

27

wston, TX

, Kidlington
", Utrecht
bridge

ler, CO
Lausanne

ience Lid., Advertising
1865) 843976; e-mail:
NY 10010-5107, USA;
ising Department, 9-15

‘H

K Computer methods

Bk in applied

;g 3 mechanics and
engineering

ELSEVIER Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

Renumbering strategies for unstructured-grid solvers operating on
shared-memory, cache-based parallel machines

Rainald Lohner
GMU/CSI, The George Mason University, Fairfax, VA 22030-4444, USA

Received 30 July 1996; revised 18 June 1997

Abstract

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory, cache-based parallel machines
are described. Special attention is paid to the avoidance of cache-line overwrite, which can lead to drastic performance degradation on this
type of machines. Both renumbering techniques avoid cache-misses and cache-line overwrite while allowing pipelining, leading to optimal
coding for this type of hardware. © 1998 Eisevier Science S.A. All rights reserved.

1. Introduction

There can hardly be any doubt that the 1990s are the decade of parallelism. Even though machines with
several powerful vector-processors were installed at many places in the 1980s, the operating system or the
system administration hardly allowed for the use of several processors during the same run. Moreover, in many
instances the compilers were not mature, leading to meaningless gains in performance. With the advent of
massively parallel machines, i.e. machines in excess of 500 nodes, the exploitation of parallelism in solvers has
become a major focus of attention. According to Amdahl’s Law, the speed-up s obtained by parallelizing a
portion & of all operations required is given by

R M
a-—k—'+(1—a)

p

where R, R, denote the scalar and parallel processing rates (speeds), respectively. Table 1 shows the speed-ups
obtained for different percentages of parallelization and different numbers of processors.

Note that even on a traditional shared-memory, multiprocessor vector machine, such as the CRAY T-90 with
16 processors, the maximum achievable speed-up between scalar code and parallel vector code is a staggering
R,/R,=240. What is important to note is that as we migrate to higher numbers of processors, only the

Table 1

Speed-ups obtainable (Amdahl’s Law)

R, /R, 50% 90% 99% 99.9%
10 1.81 5.26 9.17 991
100 1.98 9.90 50.25 90.99
1000 2.00 9.91 90.99 500.25

0045-7825/98/$19.00 © 1998 Elsevier Science S.A. All rights reserved.
PII: S0045-7825(98)00005-X

w

96 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95— 109

embarrassingly pdrallel codes will survive. Most of the applications ported successfully to parallel machines to
date have followed the Single Program Multiple Data (SPMD) paradigm. For grid-based solvers, a spatial
subdomain was stored and updated in each processor. For particle solvers, groups of particles were stored and
updated in each processor. For obvious reasons, load balancing [1-4] has been a major focus of activity.

Despite the striking successes reported to date, only the simplest of all solvers: explicit timestepping or
implicit iterative schemes, perhaps with multigrid added on, have been ported without major changes and/or
problems to massively parallel machines with distributed memory. Many code options that are essential for
realistic simulations are not easy to parallelize on this type of machine. Among these, we mention local
remeshing [5], repeated h-refinement, such as required for transient problems [6], contact detection and force
evaluation [7], some preconditioners [8], applications where particles, flow, and chemistry interact, and
applications with rapidly varying load imbalances. Even if 99% of all operations required by these codes can be
parallelized, the maximum achievable gain will be restricted to 1:100. If we accept as a fact that for most
large-scale codes we may not be able to parallelize more than 99% of all operations, the shared memory
paradigm, discarded for a while as non-scalable, will make a comeback. It is far easier to parallelize some of the
more complex algorithms, as well as cases with large load imbalance, on a shared memory machine. And it is
within present technological reach to achieve a 100 processor, shared memory machine. Such an alternative, i.e.
having less expensive RISC chips linked via shared memory, is currently being explored by a number of
vendors. One example of such machines is the SGI Power Challenge, which at the time of writing allows up to
18 processors to work in shared memory mode on a problem, with upgrades to 92 processors planned within the
next two years. In order to obtain proper performance from such a machine, the codes must be written in such a
way as to avoid:

(@) Cache-misses (in order to perform well on each processor);

(b) Cache overwrite (in order to perform well in parallel); and

() Memory contention (in order to allow pipelining).

Thus, although in principle a good compromise, shared memory, RISC-based paralle]l machines actually
require a fair degree of knowledge and reprogramming for codes to run optimally.

The present paper describes renumbering techniques for field solvers operating on unstructured grids that have
proven useful for machines of this kind. A summary of the remainder of the paper follows. Sections 2 and 3
recall some previously described renumbering techniques to minimize cache-misses and achieve pipelining.
Section 4 treats cache overwrite, a new, and previously not accounted-for design requirement for renumbering
strategies. In Section 5, implementational issues are considered. Section 6 reports several scalability studies
obtained on SGI Power Challenge and SGI Origin systems. Finally, some conclusions are drawn in Section 7.

2. Renumbering to avoid cache misses

Consider the following loop over edges that typifies the central loop of many field solvers based on
unstructured grids [9-14]. Similar loops are obtained for element- or face-based solvers, and what follows is
equally applicable to them. A right-hand side (RHS), or residual, is formed at the edge-level by gathering
information from a vector of unknowns. This edge-RHS is then added to a global point-RHS. The operations are
shown schematically in Fig. 1, and a typical FORTRAN implementation would be the following:

Loop 1

do 1600 iedge=1,nedge

ipoil=lneod (1, iedge)

ipoi2=1lnoed (2, iedge)

redge=geoed(iedge) * (unkno(ipoi2)-unkno (ipoil))
rhspo (ipoil)=rhspo (ipoil) + redge

rhspo (ipoi2)=rhspo (ipoi2) — redge

1600 continue

If cache-misses are a concern, then it is clear that the storage locations for the required point information stored

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95- 109 97
a) unkno, rhspo
[4)
ipoi1 ipoi2
b)
o geoed, redge °
ipoit ipoi2
<) rhspo
[@
ipoil ipoi2

Fig. 1. Information flow for edge-based loop.

in the arrays unkno and rhspo should be as close as possible in memory when required by an edge. At the
same time, as the loop progresses through the edges, the point information should be accessed as uniformly as
possible. This may be achieved by first renumbering the points using a bandwidth-minimization technique (e.g.
Reverse Cuthill and McKee [15], wavefront [16], recursive bisection), and subsequently renumbering the edges
according to the minimum point number on each edge [16]. All of these algorithms are of complexity O(N) or at
most O(N log N), and are well worth the effort.

3. Avoidance of memory contention

Pipelining or vectorization offers the possibility of substantial performance gain on any kind of system. While
previously restricted to so-called vector machines, such as those manufactured by CRAY, Convex, NEC, Fujitsu
or Hitachi, the concept has migrated to current RISC chips, such as the MIPS R8000 and R10000. For the latter
chip, so-called software pipelining is invoked by the compiler for certain optimization options. In order to
achieve pipelining or vectorization, memory contention issues must be avoided. The enforcement or pipelining
or vectorization is then carried out using a compiler directive, as Loop 1, which becomes an inner loop, still
offers the possibility of memory contention. In this case, we would have:

Loop 2
do 1400 ipass=1,npass
nedg0=edpas (ipass) + 1
nedgl=edpas (ipass + 1)
c$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0, nedgl
ipoil=lnoed (1, iedge)
ipoi2=lnoed (2, iedge)
redge=geoed(iedge) * (unkno (ipoi2) — unkno (ipoil))
rhspo (ipoil)=rhspo (ipoil) + redge
rhspo(ipoi2)=rhspo(ipoi2) — redge
1600 continue
1400 continue

It is clear that in order to avoid memory contention, for each of the groups of edges (1600 loop), none of the

T

98 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

1 NPOIN
| —

le——>

MVECL >
L) | | -
-—
N -—
| -—
] -—
| -—
] -~
| -—
| -—
: -—
-—
: -
NEDGE

Fig. 2. Point-range covered by each group of edges; 1-Processor machine; renumbering to minimize cache-misses and avoid memory
contention.

corresponding points may be accessed more than once. Given that in order to achieve good pipelining
performance on current RISC-chips a relatively short vector length of 16 is sufficient, one can simply start from
the edge-renumbering obtained in order to minimize cache-misses, and renumber it further into groups of edges

that are 16 long and avoid memory contention [16]. As before, this renumbering is of complexity O(N). The
resulting loop is shown schematically in Fig. 2.

4. Cache line overwrite

The next stage is to port Loop 2 to a parallel, shared memory machine. If the loop is left untouched, the
auto-parallelizing compiler will simply split the inner loop across processors. It would then appear that
increasing the vector-length to a sufficiently large value would offer a satisfactory solution. However, this is not
advisable for the following reasons:

(a) Every time a parallel do-1loop is launched, a start-up time penalty, equivalent to several hundred Flops is
incurred. This implies that if scalability to even 16 processors is to be achieved, the vector loop lengths
would have to be 16*1000. For typical tetrahedral grids we encounter approximately 22 maximum
vector-length groups, indicating that we would need at least 22 16* 1000 = 352000 edges to run
efficiently.

(b) Because the range of points in each group increases at least linearly with vector length, so do cache
misses. This implies that even though one may gain parallelism, the individual processor performance
would degrade. The end result is a very limited, non-scalable gain in performance.

(c) Because the points in a split group access a large portion of the edge-array, different processors may be
accessing the same cache-line. When a ‘dirty cache-line’ overwrite occurs, all processors must update this
line, leading to a large increase of interprocessor communication, severe performance degradation and
non-scalability. Experiments on an 8-processor SGI Power Challenge showed a maximum speed-up of
only 1:2.5 when using this option. This limited speed-up was attributed, to a large extent, to cache-line
overwrites.

In view of these consequences, additional renumbering strategies have to be implemented. In the following,
we discuss two edge-group agglomeration techniques that minimize cache misses, allow for pipelining on each
processor, and avoid cache overwrite across processors. Both techniques operate on the premise that the points
accessed within each parallel inner edge-loop (1600 loop) do not overlap.

Before going on, we define edmin (1:npass), edmax(1:npass) to be the minimum and maximum point

accessed within each group, nproc the number of processors, and the point-range of each group ipass as
[edmin(ipass), edmax (ipass)].

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109 99

4.1. Local agglomeration

The first way of achieving pipelining and parallelization is by processing, in parallel, nproc independent
vector-groups whose individual point-range does not overlap. The idea is to renumber the edges in such a way
that nproc groups are joined together where, for each one of these groups, the point ranges do not overlap (see

Fig. 3). As each one of the sub-groups has the same number of edges, the load is balanced across the Processors.
The actual loop is given by

Loop 3
do 1400 impass=1,npass
nedgl=edpas (ipass) + 1
nedgl=edpas (ipass + 1)
c ! Parallelization directive
c$doacross local (iedge, ipoil, ipoi2, redge)
c$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0,nedgl
ipoil=lnoed(1, iedge)
ipoi2=1lnoed (2, iedge)
redge=geced(iedge) * (unkno (ipoi2) —unkno (ipoil))
rhspo (ipoil) =rhspo (ipoil) + redge
rhspo (ipoi2)=rhspo(ipoi2) — redge
1600 continue
1400 continue

Note that the number of edges in each pass, i.e. the difference nedgl — nedg0 + 1 is now nproc times as large
as in the original Loop 2. As one can see, this type of renumbering entails no code modifications, making it very
attractive for large production codes. However, a start-up cost is incurred whenever a loop across processors is
launched. This would indicate that long vector-lengths should be favoured. However, cache-misses increase with

vector-length, so that this strategy only yields a limited speed-up. This leads us to the second renumbering
strategy.

o

1 NPOIN
1 l—— 4
| -
MVECL i
L) -———
] >
P . Fully Paraiies
—p Region
] -—
| e
D
B ——p
| i 9
——p 4
— 1 Processor
--— Region
NEDGE i —— \

Fig. 3. Point-range covered by each group of edges; 3-Processor machine; renumbering to minimize cache-misses and avoid memory
contention.

E iy

100 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

4.2. Global agglomeration

A second way of achieving pipelining and parallelization is by processing all the individual vector-groups in
parallel at a higher level (see Fig. 4). In this way, short vector lengths can be kept and low start-up costs are
achieved. As before, the point-range between macro-groups must not overlap. This renumbering of edges is
similar to domain-splitting [1,4,17—19), but does not require an explicit message passing or actual identification
of domains. Rather, all the operations are kept at the (algebraic) array level. The number of sub-groups, as well
as the total number of edges to be processed in each macro-group, is not the same. However, the imbalance is
small, and does not affect performance significantly. The actual loop is given by

Loop 4
do 1000 imacg=1,npasg, nproc
imacO= imacg

imacl=min(npasg, imacO + nproc — 1)

c ! Parallelization directive
cSdoacross local (ipasg, ipass, npaso0,

c$& npasl, iedge,nedg0,nedgl,

c$& ipoil, ipoi2, redge)

do 1200 ipasg=imac0, imacl
npasO=edpag (ipasg) + 1
npasl=edpag (ipasg+ 1)
do 1400 ipass=npas0,npasl
nedg0O=edpas (ipass) + 1
nedgl=edpas (ipass + 1)
c$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0,nedgl
ipoil=lnoed(1, iedge)
ipoi2=1lnoed(2, iedge)
redge=geoed(iedge) * (unkno (ipoi2) —unkno {ipoil))
rhspo (ipoil)=rhspo (ipoil) + redge
rhspo (ipoi2)=rhspo(ipoi2) — redge

1600 continue
1400 continue
1200 continue

1000 continue

1 NPOIN
1 —— A
—
MVECL e
* -
n -—
] -~
: ———— Fully Para
— Region
B [S
S ————
|]
| >
: -—
b e v
; S E—] A 1Processc
NEDGE e —| v Regon

Fig. 4. Point-range covered by each group of edges; 3-processor machine; renumbering to minimize cache-misses, Avoid memory
contention and minimize start-up costs.

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95— 109 101

As one can see, this type of renumbering entails two outer loops, implying that a certain amount of code rewrite
is required. On the other hand, the original code can easily be retrieved by setting edpag(1)=0,
edpag (2) =npas, npasg=1 for conventional uniprocessor machines.

If the length of the cache-line is known, one may relax the restriction of non-overlapping point ranges to
non-overlapping cache-line ranges. This allows for more flexibility, and leads to almost perfect load balance for
all cases tested to date.

A simple edge-renumbering scheme that we have found effective is the following multipass algorithm:

S.1. Pass 1: Agglomerate in groups of edges with point-range npoin / nproc, setting the maximum number of
groups in each macro-group naggl to the number of groups obtained for the range 1:npoin/nproc;

S.2. Passes 2ff:
— For the remaining groups: determine the point-range;
— Estimate the range of the first next macro-group from the point range and the number of processors;
— Agglomerate the groups in this range to obtain the first next macro-group, and determine the number of
groups for each macro-group in this pass naggl;
— March though the remaining groups of edges, attempting to obtain macro-groups of length naggl.
Although not optimal, this simple strategy yields balanced macro-groups, as can be seen from the examples

below. Obviously, other renumbering or load balancing algorithms are possible, as evidenced by a large body of
literature (see e.g. [1,4,17-19]).

5. Implementational issues

For large-scale codes, having to re-write and test several hundred subroutines can be an onerous burden. To
make matters worse, present compilers force the user to declare explicitly the local and shared variables. This is
easily done for simple loops such as the one described above, but can become involved for the complex loops
with many scalar temporaries that characterize advanced CFD schemes written for optimal cache reuse. We have
found that in some cases, compilers may refuse to parallelize code that has all variables declared properly. A
technique that has always worked, and that reduces the amount of variables to be declared, is to write
sub-subroutines. For Loop 4, this translates into:

Master Loop 4
do 1000 imacg=1,npasg, proc
imacO= imacg
imacl=min (npasg, imac0 + nproc — 1)
c ! Parallelization directive
c$doacross local{ipasg)
do 1200 ipasg=imac0, imacl
call loop2p (ipasg)
1200 continue
1000 continue

Loop 2p becomes a subroutine of the form:

subroutine loop2p(ipasg)

npasO=edpag (ipasg) + 1

npasi=edpag (ipasg+ 1)

do 1400 ipass=npas0, npasl

nedgl=edpas (ipass) + 1

nedgl=edpas (ipass + 1)

c$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0, nedgl

~ VRN

.

102 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

ipoil=lnoed (1, iedge)
ipoi2=1lnoed (2, iedge)
redge=geoed(iedge) * (unkno (ipoi2) —unkno (ipoil))
rhspo (ipoil) =rhspo (ipoil) + redge
rhspo (ipoi2)=rhspo (ipoi2) — redge
1600 continue
1400 continue

6. Example timings

The renumbering strategies described were coded into FEFLQ97, an adaptive, edge-based finite element code
for the solution of compressible and incompressible flows [20]. The compressible solver incorporates, among
other options, van Leer’s flux-vector and Roe’s flux-difference splitting techniques. The incompressible solver is
based on a projection technique, implying that the bulk of the CPU time is spent in a Laplacian loop of precisely
the type discussed above. The first two cases were run on an SGI Power Challenge with 6 R8000 processors, 4
Mbytes of cache and 512 Mbytes of memory, whereas the third case was run on an SGI Origin 2000 system
with 8 R10000 processors, 4 Mbytes of cache and 4 Gbytes of memory.

6.1. F-117

The surface mesh, as well as the (unconverged) solution after 50 timesteps are shown in Fig. 5(a,b). The mesh
had approximately 280 Ktetra, 52 Kpts, 8.6 Kboundary points and 340 Kedges. After renumbering, the

Mesh

v

Pressure (Ma=0.65, 50 Timesteps, VL, RK3/3)

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95— 109 103

Table 2
) ipasg npas0 npasl loopl ipmin ipmax
) (@) F-117 problem on 2 processors
1 1 8705 139280 1 23588
2 8706 17410 139280 23588 46686
3 17411 18936 24416 19980 27264
4 18937 20462 24416 45465 50160
5 20463 20760 4768 49486 50832
6 20761 21058 4767 50875 51874
7 21059 21263 3280 50319 51320
(b) F-117 problem on 4 Pprocessors
1 1 3791 60656 1 10704
2 3792 7582 60656 10709 23020
3 7583 11373 60656 23029 35623
4 11374 15164 60656 35631 46685
5 15165 16054 14240 8665 13101
6 16055 16944 14240 19470 25301
7 16945 17834 14240 32241 37526
8 17835 18724 14240 45458 48692
9 18725 19231 8112 19430 26447
10 19232 19738 8112 34507 48782
11 19739 20245 8112 48784 50727
12 20246 20590 5519 50729 51874
13 20591 20724 2144 22706 48803
14 20725 20858 2144 50168 51041
17 20859 21263 6480 47928 51226
(c) F-117 problem on 6 processors
1 1 2160 34560 1 6282
2 2161 4320 34560 6413 13918
3 4321 6480 34560 14021 22627
4 6481 8640 34560 22668 31484
5 8641 10800 34560 31487 39596
6 10801 12960 34560 39751 46585
7 12961 13555 9520 4858 7897
8 13556 14150 9520 12696 17070
9 14151 14745 9520 20533 25686
10 14746 15340 9520 28369 33391
11 15341 15935 9520 36851 40814
12 15936 16530 9520 45325 47920
13 16531 17161 10096 6247 15424
14 17162 17792 10096 19030 24188
15 17793 18423 10096 27860 34282
16 18424 19054 10096 38363 48191
17 19055 19685 10096 48192 50496
18 19686 20121 6975 50497 51874
19 20122 20273 2432 12674 25973
20 20274 20425 2432 30955 34624
21 20426 20577 2432 47184 48525
22 20578 20729 2432 49873 50832
25 20730 20857 2048 22256 26268
26 20858 20985 2048 31320 48657
27 20986 21052 1072 50319 51007
31 21053 21180 2048 22573 48853
37 21181 21263 1328 47985 49065
(d) F-117: Actual vs. optimal edge-allocation
nproc actual % optimal % loss %
2 50.482 50.00 1.0
4 26.934 25.00 7.7
6 18.234 16.67 9.4
(&) Timings for F-117 problem
nproc time (s) CPU (s) Speedup
I 919 897.0 1.00
2 485 942.5 1.89
4 281 1087.5 3.27
6 220 1235.1 4.17

-

104 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95— 109

maximum and average bandwidths were 3797 and 2510. The vector-loop length was set to 16, which was found
to be sufficient for good performance on the SGI Power Challenge. The grouping of edges according to the
number of processors is given in Table 2(a—c). The corresponding percentage of edges processed by the
processor with the maximum number of edges, as well as the theoretical loss of performance due to imbalance
(ratio of actual work carried out by this processor vs. the minimum possible work) is shown in Table 2(d). Table
2(e) summarizes the clock time and total CPU time, as well as the speed-ups obtained for a run of 50 timesteps,
including i/ o, renumbering, etc. As one can see, the performance degrades with the number of processors. This
is to be expected, as the increasing number of passes results in higher relative loop costs, and portions of the
code (i/o, renumbering, indirect data structures, some residual sums, etc.) are still running in uni-processor
mode. Given that the machine used only had 6 processors, timings obtained for the 6 processor case may be
higher than expected.

6.2. Sphere

The surface mesh, as well as the solution after 50 timesteps are shown in Fig. 6(a,b). The mesh had
approximately 332 Ktetra, 61 Kpts, 8.8 Kboundary points and 402 Kedges. After renumbering, the maximum
and average bandwidths were 1993 and 1411. The vector-loop length was again set to 16. The grouping of edges
according to the number of processors is given in Table 3(a—c). The corresponding percentage of edges
processed by the processor with the highest number of edges, as well as the theoretical loss of performance due
to imbalance is shown in Table 3(d). Table 3(e) summarizes the speed-ups obtained for a run of 50 timesteps,
including i/o, renumbering, etc. Note that the speed-up is superlinear up to four processors. A convincing
explanation of this phenomenon is still elusive, but we speculate on reduced cache-misses for the multiprocessor
runs. As before, the machine used had a total of 6 processors, so that the timings for the 6 processor case have to
be qualified. The bulk of the work for this incompressible flow case is performed in a Laplacian-like inner loop
over edges, showing that the data structures discussed perform well.

Pressure

25

Fig. 6. Sphere (incompressible). (a) Surface mesh; (b) pressure.

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95~ 109 105
Table 3
ipasg npas0 npasl loopl ipmin ipmax
() Sphere problem on 2 processors
1 1 10753 172048 1 27373
2 10754 21506 172048 27377 54935
3 21507 22282 12416 25525 29268
4 22283 23058 12416 53374 56594
5 23059 23937 14064 55413 58529
6 23938 24816 14062 58530 61039
7 24817 35118 4832 57736 59207
(b) Sphere problem on 4 processors
1 1 5023 80368 1 13171
2 5024 10046 80368 13172 26969
3 10047 15069 80368 26970 40962
4 15070 20092 80368 40964 54771
5 20093 21097 16080 11892 28113
6 21098 22102 16080 39029 55218
7 22103 23107 16080 55219 58651
8 23108 23940 13326 58654 61039
9 23941 24175 3760 26232 28688
10 24176 24410 3760 53705 55676
11 24411 24645 3760 57869 59179
13 24646 24773 2048 26788 55787
14 24774 24836 1008 58484 59308
17 24837 25118 4512 54486 56437
(c) Sphere problem on 6 processors
1 1 3349 53584 1 8960
2 3350 6698 53584 8962 18476
3 6699 10047 53584 18478 28352
4 10048 13396 53584 28354 38356
5 13397 16745 53584 38357 48329
6 16746 18797 32832 48330 54935
7 18798 19639 13472 7924 19449
8 19640 20481 13472 26448 38468
9 20482 21323 13472 46448 55065
10 21324 22165 13472 55066 58148
1t 22166 23007 13472 58149 60703
12 23008 23094 1390 60705 61039
13 23095 23363 4304 17870 38498
14 23364 23632 4304 53557 55636
15 23633 23901 4304 57295 58737
16 23902 24001 1600 60427 60914
19 24002 24149 2368 36539 38829
20 24150 24297 2368 54246 55940
21 24298 24354 912 57991 58859
25 24355 24482 2048 36906 39125
26 24483 24610 2048 54651 56231
31 24611 24738 2048 37201 39439
32) 24739 24765 432 54986 56291
37 24766 25118 5648 37506 40314
(d) Sphere: Actual vs. optimal edge-allocation
nproc actual % optimal % loss %
2 50.601 50.00 1.2
4 26.567 25.00 6.2
6 20.770 16.67 24.6
(¢) Timings for sphere problem
nproc time (s) CPU (s) Speedup
1 2259 2204.0 1.00
2 1050 2043.2 2.15
4 532 2065.0 4.25
6 430 2493.3 5.25

106 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95— 109

R Table 4
ipasg min (loopl) max (loopl)
- (a) Inlet problem on 2 processors

1-2 237776 237776
3-4 71344 71344
5-6 21392 21392
7-8 6416 6416
9-10 1770 1936
11-12 112 1024
13-14 0 576

(b) Inlet problem on 4 processors

1-4 118880 118880
5-8 35664 35664
9-12 10704 10704
13-16 3216 3216
17-20 266 1024
21-24 800 1024
25-28 0 256

(c) Inlet problem on 6 processors

1-6 79248 79248
7-12 23776 23776
13-18 7136 7136
19-24 0 2144
25~-30 1024 1024
31-36 0 1024
37-42 0 336

(d) Inlet problem on 8 processors

I-8 59440 59440
9-16 17824 17824
17-24 5360 5360
25-32 650 1600
33-40 0 1024
41-48 0 1024
49-56 0 288

(e) Sphere: Actual vs. optimal edge-allocation

nproc actual % optimal % loss %
2 50.122 50.00 0.24
4 25.140 25.00 0.56
6 16.884 16.67 1.01
8 12.743 12.50 1.94

(4f): Speedups for inlet problem

nproc Speedup (Shared) Speedup (PVM)
2 1.81 1.83

4 3.18 3.50

6 4.31) 5.10

8 5.28 —

6.3. Supersonic inlet

The surface definition, as well as the solution after 800 timesteps are shown in Fig. 7(a,b). The mesh had
approximately 540 Ktetra, 106 Kpts, 30 Kboundary points and 680 Kedges. After renumbering, the maximum
and average bandwidths were 1057 and 468. The vector-loop length was again set to 16. Instead of showing
detailed tables as before, only the minimum and maximum number of edges processed for each pass over the

- . N

R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95109 107

Surface Definition

Density

FEFLO97 ===---Shared Memory
——=== Distributed Memory (PVM)

o8
3 : : : '
T NELEM=542895 : ; : ;
g NPOIN=106285 : : : :
7 NBOUN= 30094 : ' : :
o NTIME= 100 poommee-- peommeee- PEREEEELS’ fommmonns
NSTAG= 3 : : ']
NITER= 3 : 5 ;
NRIEM= 2 : ' ' H
6 NLIMI= 2 PRREEEEEE P fommennns o
CLAPI= 0.1 : ; ' '
COURA= 1.0 : P 5 3
MACH = 3.0 : ' ' ' -
T D R pteeeons Lo
, ' Pl v’
' . P4 ' L d
: ' $" H ”
: »° r”
4 A

- .2y '\,.“
Xy Y R
TRt ‘r!,_'_k e

8
Processors
Fig. 7. Inlet problem (supersonic). (a) Surface definition; (b) density; (c) speedups.

%l

108 R. Lohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95-109

processors is given in Table 4(a—d). The corresponding percentage of edges processed by the first processor, as
well as the theoretical loss of performance due to imbalance is shown in Table 4(e). As compared to the
previous two examples, a near optimal load balance is achieved. Two reasons may be given for this
improvement. First, this example was run with a newer version of the renumbering techniques. Second, the
constraint of monotonicity in the range of points covered by each macro-group of edges was relaxed to a
non-overlap at the cache-line level, which for the SGI Power Challenge is about 15 reals. Table 4(f) and Fig.
7(c) summarize the speed-ups obtained for a run of 100 timesteps, including i/ o, renumbering, etc. for an SGI
Origin 2000 machine. Although this machine is not a true shared-memory machine, it exhibits very fast
inter-processor transfer rates, making it possible to achieve reasonable speedups in shared memory mode. The
same run was repeated using domain decomposition and message passing under PVM. Observe that although the
PVM-run achieves better speedup, the shared memory run is still competitive.

7. Conclusions

Two renumbering strategies for field solvers based on unstructured grids that operate on shared-memory,
cache-based parallel machines have been described. Special attention was given to the avoidance of cache-line
overwrite, a hitherto not considered design requirement, which, if not taken into account, can lead to drastic
performance degradation on this type of machine. Both renumbering techniques avoid cache-misses and
cache-line overwrite while allowing pipelining, leading to optimal coding. While the first technique requires no
code rewrite of the field solver, its scalability is expected to degrade for a large number of processors. The
second technique requires a moderate rewrite of traditional field solvers, but offers the potential of near-linear
scalability for a large number of processors and problem sizes. Numerical experiments indicate that with these
renumbering techniques, the number of passes over the processors is always below the theoretical minimum
number of passes one would require for maximum-length loops, which for tetrahedral meshes is 7. This implies
that these techniques are also applicable to static memory machines like the CRAY-T90, reducing loop start-up
costs and improving performance as compared to straightforward inner loop autotasking. As with any other
technique, improvements and variations are possible. The techniques described will, however, work on any
shared-memory, cache-based machine, and are in this sense general.

Acknowledgments

This work was partially supported by AFOSR, with Dr. Leonidas Sakell as the technical monitor. The author
would also like to acknowledge the many fruitful discussions with Drs. Jan Clinkemaille (ESI Group, Paris,
France), Jeffrey D. McDonald (SGI, Mountain View, CA), Jack Perry (SGI, Boston, MA), as well as Wayne
Odachowsky (SGI, Bethesda, MD), who was instrumental in coordinating the collaboration that led to the
techniques discussed.

References

[1} D. Williams, Performance of dynamic load balancing algorithms for unstructured grid calculations, CalTech Rep. C3P913 (1990).

[2] H. Simon, Partitioning of unstructured problems for parallel processing, NASA Ames Tech. Rep. RNR-91-008 (1991).

[3] P. Mehrota, J. Saltz and R. Voigt, eds., Unstructured Scientific Computation on Scalable Multiprocessors (MIT Press, 1992).

[4] A. Vidwans, Y. Kallinderis and V. Venkatakrishnan, A parallel load balancing algorithm for 3-D adaptive unstructured grids,
AIAA-93-3313-CP (1993).

[5] R. Lohner, Three-dimensional fluid—structure interaction using a finite element solver and adaptive remeshing, Computer Syst. Engrg.
(2-4) (1990) 257-272.

(6] R. Lohner and J.D. Baum, Adaptive H-refinement on 3-D unstructured grids for transient problems, Int. J. Numer. Methods Fluids 14
(1992) 1407-1419.

[7] E. Haug, H. Charlier, J. Clinckemaillie, E. DiPasquale, O. Fort, D. Lasry, G. Milcent, X. Ni, A.K. Pickett and R. Hoffmann, Recent
trends and developments of crashworthiness simulation methodologies and their integration into the industrial vehicle design cycle,
Proc. Third European Cars/Trucks Simulation Symposium (ASIMUTH), Oct. 28-30, 1991.

R. Léohner | Comput. Methods Appl. Mech. Engrg. 163 (1998) 95~ 109 109

[8] R. Ramamurti and R. Lohner, Simulation of flow past complex geometries using a parallel implicit incompressible flow solver, Proc.
11th ATAA CFD Conf., Orlando, FL (July 1993) 1049, 1050.
[9] T. Barth, A 3-D Upwind Euler solver for unstructured meshes, AIAA-91-1548-CP, 1991.
[10] D. Mavriplis, Three-dimensional unstructured multigrid for the Euler equations, AIAA -91-1549-CP (1991).
[11] A. Jameson, The AIRPLANE Code, Private communication, January 1992,
[12] J. Peraire, J. Peiro and K. Morgan, A three-dimensional finite element multigrid solver for the Euler equations, AIAA-92-0449 (1992).
(13] H. Luo, J.D. Baum, R. Lohner and J. Cabello, Adaptive edge-based finite element schemes for the Euler and Navier—Stokes equations,
AIAAA-93-0336 (1993).
[14] N.P. Weatherill, O. Hassan and D.L. Marcum, Calculation of steady compressible flowfields with the finite element method,
AIAA-93-0341 (1993).
{15] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, Proc. ACM Nat. Conf., New York (1969) 157-172.
[16] R. Lohner, Some useful renumbering strategies for unstructured grids, Int. J. Numer. Methods Engrg. 36 (1993) 3259-3270.
[17] N. Satofuka, J. Periaux and A. Ecer, eds., Parallel Computational Fluid Dynamics (North-Holland, 1995).
[18] V. Venkatakrishnan, H.D. Simon and T.J. Barth, A MIMD implementation of a parallel Euler solver for unstructured grids, NASA
Ames Tech. Rep. RNR-91-024 (1991).
[19] R. Lohner and R. Ramamurti, A load balancing algorithm for unstructured grids, Comput. Fluid Dyn. 5 (1995) 39-58.
[20] R. Lohner, FEFLO97 Theoretical Manual; GMU-CSI-CFD Lab. Report, 1996.

INFORMATION FOR CONTRIBUTORS

Manuscripts should be sent in triplicate to one of the Editors. All manuscripts will be refereed. Manuscripts should preferably be in English. They should be
typewritten, double-spaced, first copies (or clear Xerox copies thereof) with a wide margin. Abstracts, footnotes and lists of references should also be
double-spaced. All pages should be numbered (also, those containing references, tables and figure captions). Upon acceptance of an article, author(s) will be
asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Abstracts
The text of a paper should be preceded by a summary in English. This should be short, but should mention ali essential points of the paper.

Figures and tables

The drawings for the figures must be originals, drawn in black India ink in large size and carefully lettered, or printed on a high-quality laser printer. The
lettering as well as the details should have proportionate dimensions, so as not to become illegible or unclear after the usual reduction by the printers; in general,
the figures should be designed for a reduction factor of two or three. Mathematical symbols should be entered in italics, where appropriate. Each figure should
have a number and a caption; the captions should be collected on a separate sheet. The appropriate place of a figure should be indicated in the margin. Tables
should be typed on separate sheets. Each table should have a number and a title. The appropriate places for the insertion of tables should be indicated in the
margin. Colour illustrations can be included and will be printed in colour at no charge if, in the opinion of the Editors, the colour is essential. If this is not the
case, the figures will be printed in black and white unless the author is prepared to pay the extra costs arising from colour reproduction.

Formulae
Displayed formulae should be numbered and typed or clearly written by hand. Symbols should be identified in the margin, where they occur for the first time.

References

In the text, reference to other paris of the paper should be made by section (or equation) number, but not by page number. References should be listed on a
separate sheet in the order in which they appear in the text.

COMPLETE INSTRUCTIONS TO AUTHORS are published in every last issue of a volume, and copies can also be obtained from the Editors and the
Publisher, Elsevier Science BV,, PO. Box 1991, 1000 BZ Amsterdam, The Netherlands.

Instructions for LaTeX manuscripts

The LaTeX files of papers that have been accepted for publication may be sent to the Publisher by e-mail or on a diskette (3.5” or 5.25" MS-DOS). If
the file is suitable, proofs will be produced without rekeying the text. The article should be encoded in Elsevier-LaTeX, standard LaTeX, or
AMS-LaTeX (in document style “‘article’’). The Elsevier-LaTeX package, together with instructions on how to prepare a file, is available from the
Publisher. This package can also be obtained through the Elsevier WWW home page (http://www.elsevier.nl/), or using anonymous FTP from the
Comprehensive TeX Archive Network (CTAN). The host-names are: ftp.dante.de, ftp.tex.ac.uk, ftp.shsu.edu; the CTAN directories are: /pub/tex/
macros/latex209/contrib/elsevier, /pub/archive/macros/latex209/contrib/elsevier, /tex-archive/macros/latex209/contrib/elsevier, respectively. No
changes from the accepted version are permissible, without the explicit approval of the Editor. The Publisher reserves the right to decide whether to use
the author’s file or not. If the file is sent by e-mail, the name of the journal should be mentioned in the *‘subject field”” of the message to identify the
paper. Authors should include an ASCII table (available from the Publisher) in their files to enable the detection of transmission errors.

Publication information:

Computer Methods in Applied Mechanics and Engineering (ISSN 0045-7825). For 1998 volumes 151-163 are scheduled for publication. Subscription prices are
available upon request from the Publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by surface
mail except to the following countries where Air delivery via SAL mail is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan,
Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Taiwan, Thailand, USA. For all other countries airmail rates are
available upon request. Claims for missing issues should be made within six months of our publication (mailing) date.

_Orders, claims, and product enquiries: please contact the Customer Support Department at the Regional Sales Office nearest you:

New York: Elsevier Science, PO Box 945, New York, NY 10159-0945, USA; phone: (+1) (212) 633 3730 [toll free number for North American customers:
1-888-4ES-INFO (437-4636)]; fax: (+1) (212) 633 3680; e-mail: usinfo-f@elsevier.com .
Amsterdam: Elsevier Science, PO Box 211, 1000 AE Amsterdam, The Netherlands, phone: (+31) 20 4853757; fax: (+31) 20 4853432; e-mail:
nlinfo-f@elsevier.nl

Tokye: Elsevier Science K.K., 9-15 Higashi-Azabu 1-chome, Minato-ku, Tokyo 106, Japan; phone: (+81) (3) 5561 5033; fax: (+81) (3) 5561 5047; e-mail:
info@elsevier.co.jp

Singapore: Elsevier Science, No. 1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192; phone: (+65) 434 3727; fax: (+65) 337 2230; e-mail:
asiainfo @elsevier.com.sg

Rio de Janeiro: Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20050-002 Centro, Rio de Janeiro — RJ, Brazil; phone: (+55) (21) 509 5340; fax:
(+55) (21) 507 1991; e-mail: elsevier@campus.com.br [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales
Office in New York as listed above]

